Proceedings of the International Workshop on
Aging of FRP Composites

National Transportation Safety Board Training Center
Ashburn, VA

September 25-26, 2013
Published March 25, 2014

Sponsored By

U.S. Department of Transportation
Federal Highway Administration

Presented By

West Virginia University
Table of Contents

General Information .. 2
Schedule at a Glance .. 3
Group A: FRP Internal and External Reinforcements ... 4
Group B: FRP Shapes ... 5
Group C: Test Methods .. 6
Group D: Degradation and Life Prediction Models ... 7
Plenary and Group Discussion Objectives ... 8
Workshop Overview: Objective and Scope .. 9
Group A: FRP Internal and External Reinforcements ... 14
 Moisture Conditioning of Bonded FRP Composites .. 14
 Field Performance of FRP Repair Materials: The Need for More Data 14
 Durability Issues of FRP for Civil Infrastructure ... 25
Group B: FRP Shapes ... 34
 Aging of Composites of External Bonded CFRP for RC Structures Strengthening 34
 Durability Issues of Concrete Structures Strengthened with Externally Bonded FRP (EB-FRP)
 Composites ... 34
 Oregon DOT Experience with FRP .. 54
Group C: Test Methods and Models .. 60
 Aging Studies of FRP Composites at WVU-CFC ... 60
 Composite Anti-Collision Bumper Systems and Their Durability under Multi-Environmental Factors .. 60
 Creep of Pultruded Fiber Reinforced Polymeric Materials in Civil Infrastructure Applications .. 66
 Aging and Durability Issues of Wood Polymer Composites ... 72
 Review of Fibre Composite Structures in Australia ... 82
 FRP Composites in Texas Infrastructure – How Long Will They Perform? 82
Group D: Degradation and Life Prediction Models ... 96
 Fire Performance of Transportation Structures Incorporating FRP 96
 Advanced Test Methods for Evaluating the Durability Performance of FRP Materials 102
 Determining Characteristic Values of Pultruded Composites Exposed to Environmental Conditioning for use with the LRFD Standard .. 107
 Accelerated Testing Methodology for Long-Term Life Prediction of Polymer Composites .. 112
 Compressive Behaviour of Composites: Laboratory-based accelerated ageing 118
 FDOT's Experience with Material Durability and its Application to Polymers 127
Group C: Test Methods and Models .. 131
 Aging Mechanisms in Polymers and their Composites: Molecular-level Responses 131
 Durability of FRP: The Key Role of Cold-Cured Thermosetting Resins 137
 Variable Amplitude Fatigue Lifetime Predictions for FRP Composites 144
 Aging and Durability Issues for Fiber Reinforced Polymers .. 149
 A Model to Predict the Degradation of FRP Bonded Concrete Joints in Moist Environment .. 157
Appendix A: Workshop Participants ... 164
Appendix B: Working Group Session Attendance ... 166
General Information

Workshop Objectives

1) Provide a state-of-the-art knowledgebase overview on the aging of composite materials for infrastructure applications.
2) Suggest effective methods to collect additional data and procedures to integrate all the information readily available.
3) Focus on FRP composite coupon and component resistance factors based on available data.
4) Establish future research, development and evaluation roadmap dealing with durability issues and design guidelines.

Transportation Information

Vans will be available to shuttle participants to/from the hotel to the NTSB Training Center each day. The vans will depart from the hotel at 7:30 AM each day and will depart the NTSB for the hotel at 5:15 PM on Sept 25. To facilitate travelers leaving on Sept 26, one van will depart the NTSB and go directly to Dulles International Airport at 4:30 PM. The remaining vans will depart at the same time going to the Hilton Garden Inn Dulles North.

Participants who miss the shuttles will have to secure their own transportation.

Steering Committee

Gangarao Hota, West Virginia University: Co-Chair
Louis Triandafilou, Federal Highway Administration: Co-Chair
Ruifeng (Ray) Liang, West Virginia University
Charles Bakis, Penn State University
Donald Williams, West Virginia Department of Transportation
Mario Paredes, Florida Department of Transportation
Mark Skidmore, West Virginia University

Travel Reimbursement

Mark Skidmore from West Virginia University will be preparing the travel reimbursement forms during the workshop for your approval and signatures. Please see him at the registration table to submit your original receipts for reimbursement. Reimbursement checks should be sent in 6 to 12 weeks.

Acknowledgements

The Steering Committee and the West Virginia University Constructed Facilities Center are grateful to Exploratory Advanced Research (EAR) Program of the U.S. Department of Transportation – Federal Highway Administration (USDOT-FHWA) through the National Science Foundation for providing the funding for the workshop. We also want to thank all the participants for taking the time out of their busy schedules to participate in this workshop.
Schedule at a Glance

24th September 2013

Hilton Garden Inn Dulles North
22400 Flagstaff Plaza, Ashburn, VA 20148
6:00-8:00 pm Registration
6:00-8:00 pm Welcome Dinner (Hilton Garden Inn)

25th September 2013

National Transportation Safety Board (NTSB) Training Center
45065 Riverside Parkway, Ashburn, VA 20147
6:30 – 7:30 am Breakfast at Hotel (included in Room Charges)
7:30 – 7:45 am Shuttle Departure to NTSB
7:45 – 8:00 am Late Registration
8:00 – 8:20 am Opening Remarks
 • Introduction: Louis Triandafilou
 • Welcome Speech: Jorge E. Pagán-Ortiz, Director of the Office of Infrastructure Research & Development, USDOT- Federal Highway Administration
 • Workshop Objective and Scope: Gangarao Hota
8:20 – 9:20 am GROUP A: Plenary Presentations (page 4) – Chair Brahim Benmokrane
9:20 – 10:20 am GROUP B: Plenary Presentations (page 5) – Chair David Scott
10:20 – 10:30 am Break
10:30 – 11:30 am GROUP C: Plenary Presentations (page 6) – Chair Ellen Lackey
11:30 – 12:20 am GROUP D: Plenary Presentations (page 7) – Chair Charles E. Bakis
12:20 – 1:15 pm Lunch
1:15 – 3:00 pm Parallel Group Discussions: Examine the Topic (page 8)
3:00 – 3:15 pm Break
3:15 – 5:00 pm Parallel Group Discussions: Examine the Topic Continued
5:15 pm Shuttle Pick up to Hilton Garden Inn
6:00 pm Dinner (Hilton Garden Inn)

26th September 2013

National Transportation Safety Board Training Center
6:30 – 7:30 am Breakfast at Hotel (included in Room Charges)
7:30 – 7:45 am Shuttle Departure to NTSB
8:00 – 10:00 am Plenary Summaries (page 8) – Groups A and B Chairs
10:00 – 10:15 am Break
10:15 – 12:00 am Plenary Summaries (page 8) – Groups C and D Chairs
12:00 – 12:45 pm Lunch
12:45 – 1:30 pm Plenary Discussions: Prioritizing the Needs from All Groups (page 8) – Gangarao Hota
1:30 – 3:00 pm Parallel Group Discussions: RFP Development (page 8) – Group Chairs
3:00 – 3:15 pm Break
3:15 – 4:00 pm Plenary Discussions: RFPs (page 8) – Gangarao Hota
4:00 – 4:30 pm Summary of Action Items and Closing Remarks – Louis Triandafilou
4:30 pm Shuttle Pick Up to Dulles International Airport and to Hilton Garden Inn Dulles North
Group A: FRP Internal and External Reinforcements
Chair: Brahim Benmokrane

Topic Areas

- Long term performance data including surface and bond degradation under:
 - Environmental factors (pH, temperature, moisture, freeze-thaw, UV, others)
 - Load types - static, fatigue, creep, thermal and fire
 - Process parameters (cure rate, voids, fiber wrinkling, etc.) and in-service variables (temperature, humidity, wet/dry surface, etc.)
- Design specifications
 - Knock down factors, stress concentration, void effects, manufacturing defects
- Future research
 - Mechanisms of deterioration (strength, stiffness, durability) at micro, meso, macro levels
 - Fabrication and erection
 - Benefit – cost analyses
 - others

Plenary Presentations: September 25, 2013

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:20</td>
<td>Moisture Conditioning of Bonded FRP Composites</td>
<td>Trey Hamilton</td>
</tr>
<tr>
<td>8:30</td>
<td>Field Performance of FRP Repair Materials: The Need for More Data</td>
<td>Rebecca Atadero</td>
</tr>
<tr>
<td>8:40</td>
<td>Durability Issues of FRPs for Civil Infrastructure</td>
<td>Brahim Benmokrane</td>
</tr>
<tr>
<td>8:50</td>
<td>Aging of Composites of External Bonded CFRP for RC Structures Strengthening</td>
<td>Emmanuel Ferrier</td>
</tr>
<tr>
<td>9:00</td>
<td>Durability Issues of Concrete Structures Strengthened with Externally Bonded FRP (EB-FRP) Composites</td>
<td>Jian-Guo Dai</td>
</tr>
<tr>
<td>9:10</td>
<td>Oregon DOT Experience with FRP</td>
<td>Bruce Johnson</td>
</tr>
</tbody>
</table>

Group Members

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brahim Benmokrane (chair)</td>
<td>University of Sherbrooke</td>
<td>Sherbrooke, Canada</td>
</tr>
<tr>
<td>Rebecca Atadero</td>
<td>Colorado State University</td>
<td>Fort Collins, CO, USA</td>
</tr>
<tr>
<td>Jian-Guo Dai</td>
<td>Hong Kong Polytechnic University</td>
<td>Hong Kong, China</td>
</tr>
<tr>
<td>Emmanuel Ferrier</td>
<td>University of Lyon</td>
<td>Lyon, France</td>
</tr>
<tr>
<td>Trey Hamilton</td>
<td>University of Florida</td>
<td>Gainesville, FL, USA</td>
</tr>
<tr>
<td>Bruce Johnson</td>
<td>Oregon Department of Transportation</td>
<td>Salem, OR, USA</td>
</tr>
<tr>
<td>Louis Triandafilou</td>
<td>Federal Highway Administration</td>
<td>Washington, DC, USA</td>
</tr>
<tr>
<td>PV Vijay</td>
<td>West Virginia University</td>
<td>Morgantown, WV, USA</td>
</tr>
</tbody>
</table>
Group B: FRP Shapes

Chair: David Scott

Topic Areas

- Long term performance including joints under varying environments
 - Environmental factors (pH, temperature, moisture, freeze-thaw, UV, others)
 - Loading types – static, fatigue, creep, stress relaxation, shrinkage, fire
 - Process parameters and construction variables including joint design
- Design specifications
 - Knock down factors, stress concentration and stiffening effects
- Future research
 - Mechanisms of deterioration (reduction of strength, stiffness, and durability) at micro, meso, macro levels
 - Fabrication and erection
 - Benefit-cost analyses

Plenary Presentations: September 25, 2013

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:20</td>
<td>Aging Studies of FRP Composites at WVU-CFC</td>
<td>Gangarao Hota</td>
</tr>
<tr>
<td>9:30</td>
<td>Composite Anti-Collision Bumper Systems and Their Durability under Multi-Environmental Factors</td>
<td>Weiqing Liu</td>
</tr>
<tr>
<td>9:40</td>
<td>Creep of Pultruded Fiber Reinforced Polymeric Materials in Civil Infrastructure Applications</td>
<td>David Scott</td>
</tr>
<tr>
<td>9:50</td>
<td>Aging and Durability Issues of Wood Polymer Composites</td>
<td>Douglas Gardner</td>
</tr>
<tr>
<td>10:00</td>
<td>Review of Fiber Composite Structures in Australia</td>
<td>Thiru Aravinthan</td>
</tr>
<tr>
<td>10:10</td>
<td>FRP Composites in Texas Infrastructure – How Long Will They Perform?</td>
<td>Tim Bradberry</td>
</tr>
</tbody>
</table>

Group Members

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>David Scott</td>
<td>Georgia Institute of Technology</td>
<td>Atlanta, GA, USA</td>
</tr>
<tr>
<td>Thiru Aravinthan</td>
<td>University of Southern Queensland</td>
<td>Toowoomba, Australia</td>
</tr>
<tr>
<td>Michael Blanford</td>
<td>US Department of Housing and Urban Development</td>
<td>Washington, DC, USA</td>
</tr>
<tr>
<td>Tim Bradberry</td>
<td>Texas Department of Transportation</td>
<td>Austin, TX, USA</td>
</tr>
<tr>
<td>Douglas Gardner</td>
<td>University of Maine</td>
<td>Orono, ME, USA</td>
</tr>
<tr>
<td>Gangarao Hota</td>
<td>West Virginia University</td>
<td>Morgantown, WV, USA</td>
</tr>
<tr>
<td>Richard Lampo</td>
<td>US Army Corp of Engineers</td>
<td>Champaign, IL, USA</td>
</tr>
<tr>
<td>Weiqing Liu</td>
<td>Nanjing University of Tech</td>
<td>Nanjing, China</td>
</tr>
</tbody>
</table>
Group C: Test Methods

Chair: Ellen Lackey

Topic Areas

- Assessment of current standard test methods (ASTM, ACI, etc.)
 - Coupons, components, systems under static, dynamic, fatigue, creep
 - Thermal and fire, e.g. ASTM D1203
 - Shrinkage, bond, stress concentration (intensity) determination
 - Environmental stress cracking methods (ASTM D1693-Bent Strip)
 - Weathering tests
 - Chemical resistance of GFRPs

- Accelerated testing methodology (ATM) and data collection methods

- Data from natural aging
 - Field data collection of in-service FRP structures

- Nondestructive evaluation (NDE) tools

- Future research
 - Field data collection
 - Others

Plenary Presentations: September 25, 2013

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:30</td>
<td>Fire Performance of Transportation Structures Incorporating FRP</td>
<td>Venkatesh Kodur</td>
</tr>
<tr>
<td>10:40</td>
<td>Advanced Test Methods for Evaluating the Durability Performance of FRP Materials</td>
<td>Mohamed Pour Ghaz</td>
</tr>
<tr>
<td>10:50</td>
<td>Determining Characteristic Value of Pultruded Composites Exposed to Environmental Conditioning for Use with the LRFD Standard</td>
<td>Ellen Lackey</td>
</tr>
<tr>
<td>11:00</td>
<td>Accelerated Testing Methodology for Long-Term Life Prediction of Polymer Composites</td>
<td>Masayuki Nakada</td>
</tr>
<tr>
<td>11:10</td>
<td>Compressive Behavior of Composites: Laboratory-based Accelerated Ageing</td>
<td>Costastantinos Soutis</td>
</tr>
<tr>
<td>11:20</td>
<td>FDOT’s Experience with Material Durability and Its Application to Polymers</td>
<td>Mario Paredes</td>
</tr>
</tbody>
</table>

Group Members

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ellen Lackey (chair)</td>
<td>University of Mississippi</td>
<td>Oxford, MS, USA</td>
</tr>
<tr>
<td>Mohamed Pour Ghaz</td>
<td>North Carolina State University</td>
<td>Raleigh, NC, USA</td>
</tr>
<tr>
<td>Venkatesh Kodur</td>
<td>Michigan State University</td>
<td>East Lansing, MI, USA</td>
</tr>
<tr>
<td>Ruifeng (Ray) Liang</td>
<td>West Virginia University</td>
<td>Morgantown, WV, USA</td>
</tr>
<tr>
<td>Masayuki Nakada</td>
<td>Kanazawa Institute of Technology</td>
<td>Hakusan, Ishikawa, Japan</td>
</tr>
<tr>
<td>Mario Paredes</td>
<td>Florida Department of Transportation</td>
<td>Gainesville, FL, USA</td>
</tr>
<tr>
<td>Costastantinos Soutis</td>
<td>University of Manchester</td>
<td>Manchester, United Kingdom</td>
</tr>
<tr>
<td>Harry White</td>
<td>New York Department of Transportation</td>
<td>Albany, NY, USA</td>
</tr>
</tbody>
</table>
Group D: Degradation and Life Prediction Models

Chair: Charles Bakis

Topic Areas

- Material degradation (mechanistic) models
 - Thermosets (VE, PE, Epoxy, PU, Phenolic) and thermoplastics
- Bond measurements (type of forces to be measured)
 - Nano, micro, milli, meso, and macro
- Molecular level understanding of material aging
 - Physical aging and chemical aging
- Finite element and molecular dynamics modeling
- Life prediction models
 - Remaining life model
 - Fatigue life model
 - Creep, temperature, pH, moisture and other combined models
- Calibration of models
 - Lab and natural aging data
- Future research

Plenary Presentations: September 25, 2013

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:30</td>
<td>Aging Mechanisms in Polymers and Their Composites: Molecular Level Responses</td>
<td>Rakesh Gupta</td>
</tr>
<tr>
<td>11:40</td>
<td>Durability of FRP: The Key Role of Cold-cured Thermosetting Resins</td>
<td>Mariaenrica Frigione</td>
</tr>
<tr>
<td>11:50</td>
<td>Variable Amplitude Fatigue Lifetime Predictions for FRP Composites</td>
<td>Scott Case</td>
</tr>
<tr>
<td>12:00</td>
<td>Aging and Durability Issues for Fiber Reinforced Polymers</td>
<td>Samit Roy</td>
</tr>
<tr>
<td>12:10</td>
<td>A Model to Predict the Degradation of FRP Bonded Concrete Joints in Moist Environment</td>
<td>Baolin Wan</td>
</tr>
</tbody>
</table>

Group Members

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charles Bakis (chair)</td>
<td>Penn State University</td>
<td>State College, PA, USA</td>
</tr>
<tr>
<td>John Busel</td>
<td>American Composites Manufacturers Association</td>
<td>Eastchester, NY, USA</td>
</tr>
<tr>
<td>Scott Case</td>
<td>Virginia Polytechnic Institute and State University</td>
<td>Blacksburg, VA, USA</td>
</tr>
<tr>
<td>Mariaenrica Frigione</td>
<td>University of Salento</td>
<td>Lecce, Italy</td>
</tr>
<tr>
<td>Rakesh Gupta</td>
<td>West Virginia University</td>
<td>Morgantown, WV, USA</td>
</tr>
<tr>
<td>Emily Maurer</td>
<td>Delaware Department of Transportation</td>
<td>Dover, DE, USA</td>
</tr>
<tr>
<td>Samit Roy</td>
<td>University of Alabama</td>
<td>Tuscaloosa, AL, USA</td>
</tr>
<tr>
<td>Baolin Wan</td>
<td>Marquette University</td>
<td>Milwaukee, WI, USA</td>
</tr>
</tbody>
</table>
Plenary and Group Discussion Objectives

Parallel Group Discussions: Examine the Topic

Sept 25th 1:15 – 5:00 pm

1) What is the state-of-the-art?
 a. Based primarily on the presentations from the morning sessions.
 b. Group should come to a consensus understanding of the topic area in terms of the currently available research.

2) What are the barriers for FRP composites to be more fully utilized in infrastructure?
 a. Identify specific issues that have been referenced as hindering implementation.
 b. Although widespread issues are of the utmost importance, unique issues should be noted for completeness.

3) What research can break down these barriers?
 a. Considering the gaps in current research, what new studies can be undertaken?
 b. Do the issues lie in more of the same research (additional case studies)?
 c. What are the most likely funding sources?

4) Where should the priorities lie?
 a. Which research projects would have the most immediate impact?
 b. What is the size of the market for each study?

Plenary Summaries

Sept 26th 8:00 – 12:00 pm

Summarize to the whole workshop the discussion from the previous day’s parallel discussions. The focus is to educate all on the decisions made by the group and address any misunderstandings, not to debate the group’s findings.

Plenary Discussion: Prioritizing the Needs from All Groups

Sept 26th 12:45 – 1:30 pm

Using the information presented in the morning, the whole group will prioritize the research needs for infrastructure composites. The merits of each need can be debated as it is ranked.

Parallel Group Discussions: RFP Development

Sept 26th 1:30 – 3:00 pm

In the individual groups, develop draft one-page RFPs based on the highest priority projects chosen by the full workshop. Include statement of work, estimated costs, timelines, collaborations, etc.

Plenary Discussions: RFPs

Sept 26th 3:15 – 4:00 pm

Present the draft RFPs for feedback from the full workshop

All items will be summarized for inclusion in the final workshop proceedings published by FHWA.
Workshop Overview: Objective and Scope

Gangarao Hota (ghota@mail.wvu.edu)
West Virginia University Constructed Facilities Center, Morgantown, WV

Workshop Overview - Slide 1

International Workshop on Aging of FRP Composites
National Transportation Safety Board Training Center, Ashburn, VA, September 25-26, 2013

Workshop Overview - Slide 2

- Vision: To catalog and update a depository of experiences on FRP composites for Infrastructure applications
- Objectives:
 1. Provide a state-of-the-knowledgebase overview on the aging of composite materials for infrastructure applications;
 2. Suggest effective methods to collect additional data and procedures to integrate all the information readily available;
 3. Focus on FRP composite coupon and component resistance factors based on available data; and
 4. Establish future research, development, and evaluation roadmap dealing with durability issues and design guidelines
- Scope:
 1. Plenary presentations to highlight: Critical areas of durability, Availability of aging data, Methods of assessing durability, and Durability design and acceptance criteria;
 2. Round table discussion to identify research needs;
 3. Prioritize importance and impact of research topics.
FRP Composites
- Composite structural shapes, components and systems
- Re-bar, wraps and strips for strengthening or reinforcement of members
- Composites paired with conventional materials - hybrids

Manufacturing Techniques
- Filament Winding
- Compression Molding
- VARTM
- Pultrusion
- Injection Molding (only for Thermoplastics)

High-Volume Applications
- Transportation/Highway Infrastructure Systems
- Waterfront Structures including underwater piers and bents
- Buildings – office, maintenance, storage
- Poles and Pipes
- Chemical Treatment Plants, Mining Applications, Off-shore Systems

Aging Mechanisms (fibers, polymers & interface)
- Thermal and Fire (chemical & physical process at room & elevated temperatures)
- Weathering (photo-oxidation, water immersions, pollution effects, erosion)
- Chemical
- Environmental Stress Cracking (chemical compatibility, liquid diffusion, micro-voids, craze cracks, stress concentration)
- Creep and Fatigue
- Others (e.g. bio-degradation of certain polymers, fungi attacks)
- Cumulative damage (e.g. stress- temperature –pH)
Viscoelastic Behavior of FRPs

Current Understanding:
- Focus on linear viscoelastic behavior since bi-directional composites with continuous fibers and fabrics behave mostly linearly.
- Findley’s Power Law and other models
- Mechanical behavior of composite materials and components; not systems.

Need:
- Better understanding of molecular & micro scale arrangements to establish load – deformation behavior
- Mechanical & aging studies are needed to develop constitutive relations; failure models under multi-axial stress including residual stresses
- Interaction of damage modes & their effects on strength and durability
- Improved models to predict crack tip behavior?

Definition: Creep, creep rupture, stress relaxation, time-dependent deformation recovery, frequency-dependent fatigue life

Areas of Focus and Discussion Topics

Group A: FRP Internal and External Reinforcement (Rebar, Wraps, Strips)
- Long term performance data including surface and bond degradation under:
 - Environmental factors
 - pH, temperature, moisture, freeze-thaw, UV, others
 - Load types - static, fatigue, creep, thermal and fire
 - Process parameters (cure rate, voids, fiber wrinkling, etc.) and in-service variables (temperature, humidity, wet/dry surface, etc.)
- Design specifications
 - Knock down factors, stress concentration, void effects, manufacturing defects
- Future research
 - Mechanisms of deterioration (strength, stiffness, durability) at micro, meso, macro levels
 - Fabrication and erection
 - Benefit –cost analyses
 - others
Group B: FRP Shapes (deck, beams, columns, fender-piles, etc.)

- Long term performance including joints under varying environments
 - Environmental factors
 - pH, temperature, moisture, freeze-thaw, UV, others
 - Loading types – static, fatigue, creep, stress relaxation, shrinkage, fire
 - Process parameters and construction variables including joint design
- Design specifications
 - Knock-down factors, stress concentration and stiffening effects
- Future research
 - Mechanisms of deterioration (reduction of strength, stiffness, and durability) at micro, meso, macro levels
 - Fabrication and erection
 - Benefit-cost analyses

Group C: Test Methods

- Assessment of current standard test methods (ASTM, ACI, etc.)
 - Coupons, components, systems under static, dynamic, fatigue, creep
 - Thermal and fire, e.g., ASTM D1203
 - Shrinkage, bond, stress concentration (intensity) determination
 - Environmental stress cracking methods (ASTM D1693-Bent Strip)
 - Weathering tests
 - Chemical resistance of GFRPs
- Accelerated testing methodology (ATM) and data collection methods
- Data from natural aging
 - Field data collection of in-service FRP structures
- Nondestructive evaluation (NDE) tools
- Future research
 - Field data collection
 - Others
Group D: Material Degradation and Life Prediction Models

- Material degradation (mechanistic) models
 - Thermosets (VE, PE, Epoxy, PU, Phenolic) and thermoplastics
 - Bond measurements (type of forces to be measured)
 - Nano, micro, milli, meso, and macro
- Molecular level understanding of material aging
 - Physical aging and chemical aging
- Finite element and molecular dynamics modeling
- Life prediction models
 - Remaining life model
 - Fatigue life model
- Creep, temperature, pH, moisture and other combined models
- Calibration of models
 - Lab and natural aging data
- Future research

Working Groups *

<table>
<thead>
<tr>
<th>Participant</th>
<th>Affiliation</th>
<th>Group A: FRP Reinforcement</th>
<th>Group B: FRP Shapes</th>
<th>Group C: Test Methods</th>
<th>Group D: Aging Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thiru Aravinthan</td>
<td>U Southern Queensland, AU</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rebecca Badger</td>
<td>Virginia Tech University</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charles E. Bakis</td>
<td>Penn State University</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betty Breuer-Kaufman</td>
<td>Virginia Polytechnic, Virginia</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michael Heaton</td>
<td>UMD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tim Holicki</td>
<td>UMD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linda Haskell</td>
<td>AGMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scott Caro</td>
<td>Virginia Tech</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fan Gao Du</td>
<td>HK Polytechnic University</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mihirab Angizia</td>
<td>University of Rome, Italy</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matthew G. Kohn</td>
<td>University of Toledo, Ohio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tony Hamilton</td>
<td>University of Florida</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shawni Mikel</td>
<td>WPI-GC</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. Eyre Johnson</td>
<td>Virginia DOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vishal K. Kothari</td>
<td>Madras Institute of Technology</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elisa Lacey</td>
<td>University of Minnesota</td>
<td></td>
<td></td>
<td></td>
<td>Chair</td>
</tr>
<tr>
<td>Rick Lampe</td>
<td>NASA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ray Long</td>
<td>WVU-GC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weiping Lin</td>
<td>U of Tech, China</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kathy Marcus</td>
<td>Delmarva DOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muhammad Mehran</td>
<td>Universiti Teknologi Malaysia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. Ergebnar</td>
<td>Universiti Teknologi Malaysia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melissa Pankratz</td>
<td>NC State University</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dale clay</td>
<td>Virginia Tech University</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Scott</td>
<td>Georgia Tech</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandeep Bhatia</td>
<td>University of Melbourne, UK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leen D. Van Vledder</td>
<td>UGent-Flanders</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS Vino</td>
<td>WVU-GC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rohit Wani</td>
<td>Morgan State University</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harry White</td>
<td>New York DOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Volunteer as group Recorder is needed for each group.
Moisture Conditioning of Bonded FRP Composites

Summary

The interface between the epoxy adhesive and the concrete in bonded Carbon Fiber Reinforced Polymer (CFRP) composites has been found to deteriorate when exposed to moisture. This presentation covers work conducted that focuses on this particular aspect of FRP composites.

Under NCHRP 12-73 the Univ. of Wyoming and Univ. of Florida developed mechanical test procedures and accelerated conditioning protocols that can be used to establish the resistance of the CFRP bond to degradation due to moisture. The test specimen is a 100 x 100 x 350 mm (4 in. x 4 in. x 14 in.) beam, tested in three-point bending (flexure) on a 300 mm (12 in.) span length. The specimen is prepared by providing a full-width half-depth saw cut approximately 2.5 mm (0.1 in.) wide at midspan. Two conditioning protocols are proposed depending on the anticipated exposure. For unprotected CFRP systems the conditioned specimens are submerged in 60°C (140°F) water for 60 days. For systems in a protected environment, the specimens are exposed to 100% relative humidity at 60°C (140°F) for 60 days.

To better understand behavior at the bond line additional work has been conducted in two areas. The first is to evaluate the effect of moisture and heat used to accelerate the deterioration of the bond. In addition, work is ongoing to understand the relative contribution of mechanical and chemical bond to the overall adhesive strength. This presentation touches on these projects and some of the preliminary findings and concludes with suggested areas of research focus.
Group A - Slide 3

Current specifications

- Current design and construction specifications include:
 - AASHTO guide spec.
 - ICBO - AC125
 - ACI440 design and construction spec.
 - Several conditioning protocols

Group A - Slide 4

Method of assessing durability

- Developed: NCHRP 12-73 (Univ. of Wyo and FL)
- Balloting: ASTM
- Balloting: ACI 440L
Group A - Slide 5

Conditioning
Specimen fabrication and preparation
Temp: 60°C
Time: 60 days

Mechanical testing of SLC and ACP specimens
Residual Property
ACP results
SLC controls

Normalized data wrt Control

Normalized data wrt Control

Normalized data wrt Control
Epoxy Testing

- Differential Scanning Calorimeter (DSC) to find T_g.
- Fourier Transform Infrared Spectrometry (FTIR) to measure water content and conversion.

Epoxy Testing – Effect of plasticization

- Elevated temperatures increased epoxy conversion (improving T_g).
- Moisture increased epoxy water content (reducing T_g).
- T_g of 30°C samples is lower than that of 60°C samples under humid conditions.
Direct shear adhesive bond test

- Relative importance of chemical to mechanical bond by varying the surface roughness of mortar cubes

Looking ahead

UF is currently conducting survey of existing FRP repairs on bridges in Florida. Several diagnostic load tests have been conducted. Beams have been salvaged for testing and autopsy. Some of these repairs are upwards of 20 years old.
Areas in Need of Further Research

- Better understanding of the short and long term effect of moisture on bond
- Develop conditioning protocols that effectively accelerate deterioration of FRP composites
- Relate conditioning protocols to real-time deterioration
- Develop design factors that can be used as knock-down factors

Field Performance of FRP Repair Materials: The Need for More Data

Rebecca Atadero (ratadero@engr.colostate.edu)
Colorado State University, Fort Collins, CO, 80523
An important area for further research is the performance of externally bonded FRP materials in the field. FRP has been applied as a repair material on numerous structures over the last twenty years, yet very little information on the performance of these applications is available. The synergistic processes affecting FRP properties in the field including field application/curing, loading, and highly variable environmental conditions cannot be fully simulated in the laboratory.

A recent study conducted for the Colorado Department of Transportation considered the performance of externally bonded CFRP applied to the arches of the Castlewood Canyon Bridge which underwent major reconstruction in 2003. This study indicated that there was likely some degradation of the repair occurring over time, but was limited by the lack of baseline data. Direct tension pull off tests indicated lower bond strengths and less desirable failure modes. Significant areas showed debonding, and debonded regions identified during previous routine bridge inspections had grown significantly. Many tensile coupons had strengths below manufacturer design values. Further work at additional sites is needed to build on these findings.

This study illuminated several challenges that must be considered in future durability studies. Currently the techniques available for inspection are limited and bridge inspectors may have little experience with FRP. Baseline data is vital and should be carefully collected and maintained. Recording spatial and temporal data on debonding can be very time consuming.

Prior to repair the structure suffered from severe corrosion and spalling.

Photos by Mansour Mohseni, CDOT

CFRP was applied longitudinally on the underside of the arch for flexure. The entire arch was then wrapped laterally, leaving some vents on the underside.
Direct Tension Pull-off Tests

- Testing conducted in 2003 as part of quality control efforts (locations indicated in red) – 42 total
- Testing conducted in 2011 as part of field evaluation (locations indicated in red) – 27 total
- Access was difficult in 2011

Histogram of Pull-Off Strengths

Typical QC threshold 1.4MPa (200psi)

- 2003 Pull-off Test
- 2011 Pull-off Test

Pull-off Strengths (MPa)

<table>
<thead>
<tr>
<th>Pull-off Strengths (MPa)</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0-1.2</td>
<td>2003 Test, 2011 Test</td>
</tr>
<tr>
<td>1.2-1.4</td>
<td>2003 Test, 2011 Test</td>
</tr>
<tr>
<td>1.4-1.6</td>
<td>2003 Test, 2011 Test</td>
</tr>
<tr>
<td>1.6-1.8</td>
<td>2003 Test, 2011 Test</td>
</tr>
<tr>
<td>1.8-2.0</td>
<td>2003 Test, 2011 Test</td>
</tr>
<tr>
<td>2.0-2.2</td>
<td>2003 Test, 2011 Test</td>
</tr>
<tr>
<td>2.2-2.4</td>
<td>2003 Test, 2011 Test</td>
</tr>
<tr>
<td>2.4-2.6</td>
<td>2003 Test, 2011 Test</td>
</tr>
<tr>
<td>2.6-2.8</td>
<td>2003 Test, 2011 Test</td>
</tr>
<tr>
<td>2.8-3.0</td>
<td>2003 Test, 2011 Test</td>
</tr>
<tr>
<td>3.0-3.2</td>
<td>2003 Test, 2011 Test</td>
</tr>
<tr>
<td>3.2-3.4</td>
<td>2003 Test, 2011 Test</td>
</tr>
<tr>
<td>3.4-3.6</td>
<td>2003 Test, 2011 Test</td>
</tr>
<tr>
<td>3.6-3.8</td>
<td>2003 Test, 2011 Test</td>
</tr>
<tr>
<td>3.8-4.0</td>
<td>2003 Test, 2011 Test</td>
</tr>
</tbody>
</table>
Direct Tension Pull-off Test Results

Change in Failure Mode - ASTM D7522

% Failure Mode

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003 Pull-off Test</td>
<td>70.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2011 Pull-off Test</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Direct Tension Pull-off Test Specimens

- Many of the weak pull-off tests showed thick layers of a white filler material between the FRP and concrete.
- Does the filler have an effect on bond strength, or the potential for debonding?

Layer of white filler at the bond failure surface.

Filler thickness varied over the arch. These are samples removed for tension tests at two different locations.
Debonding

- Thermal imaging and tap tests were conducted across the entire upper surface of the east arch.
- Areas that had been identified in previous field assessments had grown in size.
- Many apparently new debonded regions were found – some quite large.

The debonded regions in these two figures were found in the same bay of the bridge, suggesting the large region shown at the right developed in a comparatively short period of time (since 2007).

Tension Tests

- Two debonded regions were removed from the bridge and cut into tensile coupons.

The graph shows the tensile strength (MPa) of different batches of materials tested:

- Manufacturer's Design Value
- 1NE Patch
- 3NE Patch

Quantity

Tensile Strength (MPa)
Limitations

- At the time of the repair, no consideration was given to future study of the FRP durability.
- Baseline values for the material as applied to the bridge could not be determined for the FRP tensile strength and modulus.
- The only intermediate evaluations were routine bridge inspections.
- The difficulty of access to the bridge limited the scope of this evaluation.

Conclusions

- There was likely some deterioration of the CFRP and its bond to the concrete.
- We are not able to quantify the amount of deterioration due to a lack of baseline values.
- Similar studies need to be conducted at other repair sites to understand typical field performance.
- Planning and design of repairs should consider the future desire for durability data by carefully collecting, documenting and maintaining baseline values and providing sacrificial areas so that the FRP can be tested without damaging the repair.

Topics in Need of Further Research

- Simple and accurate techniques for field assessment of externally bonded FRP are needed for researchers and bridge inspectors.
- Effect of fiber materials and their thickness on FRP-concrete bond performance.
- Correlation between debonding and growth of debonded areas with environmental and loading conditions.
- Effectiveness of filling debonded areas with epoxy injection.
- Ways to easily assess the impact of debonding on the performance of the repaired structure.
- Means of effective documentation (both spatial and temporal).
 - Areas of shotcrete placement
 - Locations where voids detected during QC inspection were filled with epoxy injection
 - Size and shape of debonded regions over time

The research described herein was funded by the Colorado Department of Transportation and the Mountain Plains Consortium (Region 8 UTC).
Durability Issues of FRP for Civil Infrastructure

Professor Brahim Benmokrane, FACI, FCSCE, FIIFC, FCAE, FEIC
(Brahim.Benmokrane@USherbrooke.ca)

Group A - Slide 23

Summary
Application of fibre reinforced polymer (FRP) composites in civil structures have increased significantly in recent years. The durability of these materials, especially under severe environmental conditions, is now recognized as the most critical topic of research. The lack of data on durability of FRPs is a major obstacle to their acceptance on a broader scale in civil engineering. This presentation highlights the major factors affecting the durability of FRPs related to internal reinforcement and external strengthening of concrete members. The durability in both these types of applications has been extensively investigated in the past two decades. Degradation mechanisms, accelerated tests for long-term performance, and the effects of environment parameters such as moisture, salt solutions, alkaline on the durability of FRPs are presented and discussed. In addition, stress limits, and strength and environmental reduction factors adopted by current international design codes and guides are reviewed. Advances in FRP material durability, key points ensuring durability of FRPs and research avenues are presented.
Factors Affecting the Durability of FRPs

Degradation processes in FRPs are typically denoted as:

1. Fiber dominated
2. Matrix dominated, or
3. Interface dominated

It is important to understand that the durability performance of the FRP materials (micro sized fibers in polymer matrices) is intrinsically controlled by the microstructure, which is in turn controlled by:

• the choice of the constituent materials
• the interface (interphase) development
• and the manufacturing process
The tensile strength of this particular basalt FRP bar sample conditioned in alkaline solution at 60°C during 3 months has been reduced by more than 45% because load transfer has been highly compromised by the development of fiber-matrix debonding.

Air bubbles and poor fiber wetting make the material more porous and therefore more sensitive to moisture and corrosive fluid ingress. Diffusion of water or aqueous solutions along the fibers may weaken the bond strength at the interface.
Another Factor Affecting the Long-Term Durability
Glass Transition temperature (Tg)

Accelerated Aging Tests

1. Assumption is that degradation is caused primarily by a single chemical reaction
2. If assumption is correct, then rate of reaction can be increased by increasing temperature
3. Specimens are ‘aged’ by placing them in solution baths (e.g., water, alkaline, salt) at an elevated temperature
Alkali Resistance With Sustained Tensile Load

Strength loss = f (time, temperature)
Prediction of Long-Term Strength

Construction of Arrhenius Plot

1st approach: Time may be plotted as a function of inverse absolute temperature for various percentages of property retention.

- **(a) Plot of property retention as a function of time**
- **(b) Arrhenius plot for service life as a function of temperature and percent retention**

An acceptable regression line must have an \(r^2 \) of at least 0.80.

First Field Study (2004)

DURABILITY STUDY ON CONCRETE CORES

To determine the effect of ageing in the field after several years in service, concrete cores containing GFRP bars/grids have been extracted from five Canadian bridges and analyzed:

1. Joffre Bridge, QC (ribbed-deformed GFRP Bars)
2. Crowchild Bridge, AB (ribbed-deformed GFRP Bars)
3. Hall’s Harbour, NS (sand-coated GFRP Bars)
4. Waterloo Creek, BC (GFRP Grid)
5. Chatham, ON (GFRP Grid)

SPECIFIC: Microscopic and physico-chemical analysis on core samples.
First Field Study (2004) - RESULTS (Cont...)

Scanning Electronic Microscopy:

- No resin microcracking
- No glass fibre degradation
- No significant delamination/debonding

Conclusion from First Field Study

- 5 to 8 years of service condition
- No Evidence of debonding between GFRP and concrete
- Alkali attack could not be detected in the GFRP reinforcement materials.
- No deterioration of GFRP reinforcement took place in any of the field demonstration structures.
- The results of this study were the basis for the version of the Canadian Highway Bridge Design Code (CSA S6-06) allowing the use of GFRP as primary reinforcement and prestressing tendons in concrete components provided the stress level in GFRP at SLS does not exceed 2.5% of its ultimate strength.
Material Specifications (North America)

Material Specifications: Describes permitted constituent materials, limits on constituent volumes, and minimum performance requirements. Provides provisions governing testing and evaluation for product qualification and QC/QA.

Canadian Standard Association (Canada)
1. CAN/CSA-S807-10: “Specifications for Fibre Reinforced Polymers”.
2. CAN/CSA-S808-14: “Specifications for Fibre Reinforced Polymers (FRP) Materials for Externally Reinforcing Structures” (*Currently under development*).

American Concrete Institute (USA)
1. ACI 440.6-08: “Specification for Carbon and Glass FRP Bar Materials for Concrete Reinforcement”.

International Code Council (ICC) Evaluation Service Acceptance Criteria
1. AC125-2010: “Acceptance Criteria for Concrete and Reinforced and Unreinforced Masonry Strengthening Using Externally Bonded Fiber-Reinforced Polymer (FRP)”.

Material Specifications (North America)

Durability Related Provisions:

1. **Limit on Constituent Material, e.g.**
 - Limits on diluents and certain fillers
 - Limits on low-profile additives
 - No blended resins

2. **Lower Limit on Glass Transition Temperature (Tg) & Cure Ratio**
 - Minimum cure ratio and Tg

3. **Material Screening Through Physical & Durability Properties**
 - Maximum void content
 - Maximum water absorption
 - Limits on mechanical property loss in different environment conditioning (Alkali, Dry Heat, Water, Saltwater, Freeze-Thaw, and UV Resistances).

First published in 1999, the ACI 440.1R-06 evolved from emerging technology to ACI standard publications on the use of FRP bars to reinforce concrete. This publication has gone through 3 iterations over the years to refine the design equations used in this document. This has become a well reference and used world-wide design document as the authority for internally reinforced concrete with FRP bars.
Concluding Remarks

Corrosion resistance is without doubt the main motive and attraction to use FRPs over the steel.

Modes of degradation of FRPs (in civil engineering) are well understood. Test methods and requirements for assessing FRPs with high durability have been proposed.

Application of FRPs in different civil infrastructures has been proved to be very successful to date.

Glass FRP bars are durable in concrete. The durability performance of FRP materials is generally very good in comparison with other, more conventional, construction materials.

Basalt FRP bars present interface problems. These problems should be resolved before their testing qualification according to the requirements of Material Specifications and Standards (such as CAN/CSA S807 and ACI 440.6) and implementation in field pilot projects.

Research avenues

- Synergistic (combined) Effects of Load, Moisture, and Temperature on the Thermo-mechanical Properties of FRPs (e.g., Reinforcing Bars, Prestressing Tendons, Bonded FRP Systems).
- Development of Accelerated Ageing Testing Protocols Simulating the Field Conditions (ACI 440L Sub-Committee is preparing a guide on this topic). Development and/or enhancement of predictive models.
- Development of Field Monitoring, Inspection and Evaluation Guidelines for Long Term Performance of FRP Materials and Structures.
- Development of Carbon Nanotube-Based Sensing for Structural Health Monitoring (dispersed Carbon Nano-Tubes in FRP Reinforcing Bars, Tendons, and FRP Layers).
- Aging of In-Service (Field) Structures to collect field samples and calibrate the field aging parameters (e.g., thermo-mechanical property) with the laboratory-based accelerated aging test data. Life predictive models and development of accurate life cycle assessment of FRPs. Reliable resistance factors.
Aging of Composites of External Bonded CFRP for RC Structures Strengthening

Prof. FERRIER Emmanuel (emmanuel.ferrier@univ-lyon1.fr)
University LYON 1, LGCIE, 82 bd Niels Bohrs

This presentation focuses on durability of FRP composite materials for external bonded strengthening of reinforced concrete structures. Aging of CFRP materials is obtained thanks to aging tests on material, creep and fatigue tests on concrete to adhesive interface. Results show that based on these results tensile CFRP properties is no affect by aging while the main problem is the adhesive with low glass transition temperature. Selecting adhesive with a Tg higher than 60°C allows to guaranty the adhesive durability.
Methods of Assessing Durability Issues of FRPs

1. Aging on CFRP laminate, and FRP/FRP interface using single lap shear test

The tensile tests have been done with the European norm NF EN ISO 527-5 used for unidirectional fiber reinforced polymer.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Size [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_1</td>
<td>250</td>
</tr>
<tr>
<td>L_2</td>
<td>150</td>
</tr>
<tr>
<td>b_1</td>
<td>15</td>
</tr>
<tr>
<td>L_0</td>
<td>50</td>
</tr>
<tr>
<td>b_2</td>
<td>1.2</td>
</tr>
<tr>
<td>L_2</td>
<td>50</td>
</tr>
<tr>
<td>h_2</td>
<td>1</td>
</tr>
</tbody>
</table>

The interlaminar shear strength is obtained by ASTM D 3165 standard. The test principle corresponds to a single lap shear test.

Methods of Assessing Durability Issues of FRPs

1. Aging on CFRP laminate, and FRP/FRP interface using single lap shear test

The ageing is done with an apparatus in a unique room and regulated by a program, in accordance with the section 6.1 of French norm NF T 30-049. Notably in relation to thermal shocks between stages like describe below:

- temperature going to 20°C (rain) to minus 20°C (frost) in less than 10 min,
- taken back up in temperature from -20°C (frost) in 55°C (humid warmth) in 30 min ±10 min,
- taken back up in temperature of 55°C (humid warmth) in 60°C (temperature black panel) in 5 min ±2 min,
- temperature reduce from 60°C (temperature black panel) in 20°C (rain) in 5 min ±2 min.
Aging Data Available

1. Aging on CFRP laminate, and FRP/FRP interface using single lap shear test

Tensile tests show that the ageing cycles do not have influence on general behaviour in tension of CFRP laminates. In effect, the difference between results before and after aging is close to 1% for the strength; it is close to 4% in relation to Young modulus.

<table>
<thead>
<tr>
<th>Sample</th>
<th>f'_t (MPa)</th>
<th>E'_f (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>before aging</td>
<td>11.69</td>
<td>179781</td>
</tr>
<tr>
<td>after aging</td>
<td>14.15</td>
<td>172000</td>
</tr>
</tbody>
</table>

Comparison: $\times 0.988 \times 0.957$

Interlaminar shear test

Interlaminar tests show that the effect of ageing is rather favourable to the system of strengthening. In effect, average shear strength after ageing increased by 21% when tests samples were subjected to the 100 cycles of ageing.

<table>
<thead>
<tr>
<th>Sample</th>
<th>$\tilde{\tau}_{moy}$ (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>before aging</td>
<td>11.69</td>
</tr>
<tr>
<td>after aging</td>
<td>14.15</td>
</tr>
</tbody>
</table>

Comparison: $\times 1.21$

Sample Design Recommendations: French standard

FRP material tensile properties

- SLS $\gamma_f = 1.4$
- ULS $\gamma_f = 1.2$
 - Carbon epoxy laminate
- SLS $\gamma_f = 2$
- ULS $\gamma_f = 1.4$
 - Carbon epoxy applied with hand lay up
- SLS $\gamma_f = 2.5$
- ULS $\gamma_f = 1.6$
 - Glass epoxy applied with hand lay up

For instantaneous behaviour: $\alpha_t = 1$

For long term purpose: $\alpha_t = 0.65$

Interface shear properties

- ULS $\gamma_{ad} = 1.4$
- SLS $\gamma_{ad} = 2$

$\alpha_{ad} = 0.8$ if $TG > 50^\circ C$

$\alpha_{ad} = 0.4$ if $TG < 50^\circ C$

(TG: Glass transition temperature)
Methods of Assessing Durability Issues of FRPs

2. Creep and fatigue of FRP/concrete interface using double lap shear test

\[
G = \frac{\Delta \bar{e}}{S - \bar{T}}
\]

- \(G \): shear modulus
- \(\Delta \bar{e} \): effective thickness
- \(S \): average shear stress (effort/hanked area)
- \(\bar{T} \): average displacement of concrete blocks
- \(\Delta \bar{e} \): computer displacement

(a) Shear strain measurement

Aging Data Available

2. Creep and fatigue of FRP/concrete interface using double lap shear test

Static behavior laws:

- [Graph showing temperature vs. average shear strength (MPa)]
- [Graph showing average shear strain (inches) vs. average shear stress (MPa)]
Methods of Assessing Durability Issues of FRPs

2. Creep and fatigue of FRP/concrete interface using double lap shear test

Time - temperature superposition principle, (Williams, Landel and Ferry)

- **Creep**, Combined effect
 - "time - temperature - loading",

- **Long-term tests:**
 - \(G = f(T_{60t}, T_{60t}) \)
 - Identification of creep functions

- **Short-term tests:**
 - \(G = f(T_{30t}, T_{30t}) \)
 - MC* construction
 - Creep function identification

Comparison of master and long-term curves

Concrete to adhesive Interface shear modulus

Short term test: C. M. \(T_0 \)

Aging Data Available

2. Creep and fatigue of FRP/concrete interface using double lap shear test

Concrete to adhesive interface shear modulus Short term test: C. M. \(T_0 \)

Creep function:

\[
\delta(t, \tau) = \varepsilon(\tau) + \sum_{i=0}^{n} E_i \varepsilon_i e^{-t/\tau_i}
\]
Concrete to adhesive Interface: Effect of creep FEM modeling

Stress redistribution from FRP to concrete

Sample Life Prediction Models

\[
\gamma(t, T) = \gamma_{\text{init}} + \gamma_{\text{creep}}
\]

\[
\gamma(t, T) = \tau_0 \cdot D(t, T)
\]

\[
\tau_0 = \frac{\gamma(t, T)}{D(t, T)}
\]

\[
\tau_{\text{adm}} = \frac{\gamma_e}{D(t, T)}
\]

\(\gamma_e\): initial shear stress; \(D(t, T)\): creep function
\(\gamma(t, T)\): initial shear strain; \(\tau_{\text{adm}}\): allowable shear stress
\(\tau_{\text{adm}}\): shear strain limit
Sample Topics in Need of Further Research

- Creep can be benefit for Interface by reducing local peak shear stress, investigation on structures is needed.
- Creep depends on adhesive glass transition temperature, higher quality of epoxy is needed.
- Fixed the values of safety factors with regards to all obtained data.
- Combined effect of stress, temperature, moisture.
- Develop case study analysis already obtained to control the limit of existing standard.

Aging of Composites of external bonded CFRP for RC structures strengthening

Prof. FERRIER Emmanuel (emmanuel.ferrier@univ-lyon1.fr)
University LYON 1, LGCIE, 82 bd Niels Bohr

This presentation focuses on durability of FRP composite materials for external bonded strengthening of reinforced concrete structures. Aging of CFRP materials is obtained thanks to aging tests on material, creep and fatigue tests on concrete to adhesive interface. Results shows that based on these results tensile CFRP properties is no affect by aging while the main problem is the adhesive with low glass transition temperature. Selecting adhesive with a T_g higher than 60°C allows to guarantee the adhesive durability.
Methods of Assessing Durability Issues of FRPs

1. Aging on CFRP laminate, and FRP/FRP interface using single lap shear test

The tensile tests have been done with the European norm NF EN ISO 527-5 used for unidirectional fiber reinforced polymer.

The interlaminar shear strength is obtained by ASTM D 3165 standard. The test principle corresponds to a single lap shear tests.

Designation Size [mm]

<table>
<thead>
<tr>
<th>Designation</th>
<th>Size [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_1</td>
<td>250</td>
</tr>
<tr>
<td>L_2</td>
<td>190</td>
</tr>
<tr>
<td>L_3</td>
<td>150</td>
</tr>
<tr>
<td>h_3</td>
<td>15</td>
</tr>
<tr>
<td>$h_1, 2$</td>
<td>50</td>
</tr>
<tr>
<td>h_2</td>
<td>1</td>
</tr>
<tr>
<td>h_4</td>
<td>12.7</td>
</tr>
<tr>
<td>b_1</td>
<td>25</td>
</tr>
<tr>
<td>b_2</td>
<td>2.5</td>
</tr>
<tr>
<td>c_1</td>
<td></td>
</tr>
<tr>
<td>c_2</td>
<td></td>
</tr>
</tbody>
</table>

The ageing is done with an apparatus in a unique room and regulated by a program, in accordance with the section 6.1 of French norm NF T 30-049. Notably in relation to thermal shocks between stages like describe below:

- temperature going to 20°C (rain) to minus 20°C (frost) in less than 10 min,
- taken back up in temperature from - 20°C (frost) in 55°C (humid warmth) in 30 min ±10 min,
- taken back up in temperature of 55°C (humid warmth) in 60°C (temperature black panel) in 5 min ±2 min,
- temperature reduce from 60°C (temperature black panel) in 20°C (rain) in 5 min ±2 min.
1. Aging on CFRP laminate, and FRP/FRP interface using single lap shear test

Tests show that the ageing cycles does not have influence on general behaviour in tension of CFRP laminates. In effect, the difference between results before and after aging is close to 1% for the strength; it is close to 4% in relation to Young modulus.

<table>
<thead>
<tr>
<th>f<sub>0</sub> [MPa]</th>
<th>E<sub>0</sub> [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample before aging</td>
<td>1195</td>
</tr>
<tr>
<td>Sample after aging</td>
<td>3158</td>
</tr>
<tr>
<td>Comparison</td>
<td>× 0.908</td>
</tr>
</tbody>
</table>

Interlaminar shear test

Interlaminar tests show that the effect of ageing is rather favourable to the system of strengthening. In effect, average shear strength after ageing increased by 21% when tests samples were subjected to the 100 cycles of ageing.

<table>
<thead>
<tr>
<th>τ<sub>0</sub> [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample before aging</td>
</tr>
<tr>
<td>Sample after aging</td>
</tr>
<tr>
<td>Comparison</td>
</tr>
</tbody>
</table>

Sample Design Recommendations: French standard

FRP material tensile properties

For instantaneous behaviour: α_t = 1
For long term purpose: α_t = 0.65

Carbon epoxy laminate
SLS τ₁ = 1.4
ULS τ₁ = 1.25

Carbon epoxy applied with hand lay up
SLS τ₁ = 2
ULS τ₁ = 1.4

Glass epoxy applied with hand lay up
SLS τ₁ = 2.5
ULS τ₁ = 1.6

Interface shear properties

If TG > 50°C
α_{αd} = 0.8
If TG < 50°C
α_{αd} = 0.4
2. Creep and fatigue of FRP/concrete interface using double lap shear test

Methods of Assessing Durability Issues of FRPs

(a) Shear strain measurement

Temperature and stress regulation
T=60°C

Water or temperature creep tests

\[G = \frac{\Delta L_2 - \Delta L_1}{S \cdot T_0} \]

- \(G \): shear modulus
- \(S \): adhesive thickness
- \(L_1 \): average shear stress (effort divided by bonded area)
- \(L_0 \): average displacement of concrete blocks
- \(L_{r0} \): concrete displacement

Aging Data Available

Static behavior laws:

Temperature (°C)

Average shear strength (MPa)

0.5
1
1.5
2
2.5
3
3.5
-40°C -20°C -10°C 0°C 20°C 40°C 60°C 80°C
Creep, Combined effect
"time - temperature - loading",

Long-term tests:
- $G = f(t_{6\text{months}}, T_{60\text{C}}, t_0)$
- Identification of creep functions

Short-term tests:
- $G = f(t_{\text{short}}, T_{2\text{0,30}60}, t_0)$
- MC* construction,
- Creep function identification

Comparison of master and long-term curves

Aging Data Available

Concrete to adhesive Interface shear modulus
Short term test: C. M. (T_0)

Creep function:
$$R(t, T) = E_0(t) \sum \frac{1}{j} E_j(t)e^{-\frac{t}{\eta_j}}$$

Methods of Assessing Durability Issues of FRPs
2. Creep and fatigue of FRP/concrete interface using double lap shear test

Time - temperature superposition principle, (Williams, Landel and Ferry)
Concrete to adhesive Interface: Effect of creep FEM modeling

Stress redistribution from FRP to concrete

Evaluation of shear stress limit

\[
\gamma(t, T) = \gamma_{inst} + \gamma_{creep}
\]
\[
\gamma(t, T) = \tau_0 \cdot D(t, T)
\]
\[
\tau_0 = \frac{\gamma(t, T)}{D(t, T)}
\]
\[
\tau_{adm} = \frac{\gamma_e}{D(t, T)}
\]

\(\gamma_{inst}\): initial shear stress; \(D(t, T)\): creep function
\(\gamma(t, T)\): initial shear strain; \(\tau_{adm}\): allowable shear stress
\(\gamma_e\): shear strain limit
Sample Topics in Need of Further Research

- Creep can be benefit for Interface by reducing local peak shear stress, investigation on structures is needed.
- Creep depends on adhesive glass transition temperature, higher quality of epoxy is needed.
- Fixed the values of safety factors with regards to all obtained data.
- Combined effect of stress, temperature, moisture.
- Develop case study analysis already obtained to control the limit of existing standard.

Durability Issues of Concrete Structures Strengthened with Externally Bonded FRP (EB-FRP) Composites

Dr. Jian-Guo Dai(cejgdai@polyu.edu.hk)
Department of Civil and Environmental Engineering,
The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
Summary

Development of externally bonded FRP (EB-FRP) systems has been a major breakthrough in the strengthening of concrete structures over the past three decades. Its popularity is increasing with the tremendous needs of maintaining and upgrading the serviceability and safety of concrete structures. In general, there are two categories of EB-FRP strengthening applications: (1) bond-critical application, in which the bond between EB-FRP and concrete is a critical issue; and (2) contact-critical application, in which the rupture of FRP is a more critical concern. This presentation outlines the durability issues of the above two types of applications. The contents consist of a brief summary of critical issues of the long-term durability of EB-FRP system in strengthening of concrete structures, important aging data that are available, and test methods and methodology for assessing the local and global degradation. The author’s perspectives on the areas for further research are also illustrated. The presentation particularly focuses on the research efforts in Japan, Hong Kong and Mainland China.

Overall summary of critical durability issues

- **FRP Materials**
 - Chemical resistance: cementitious matrix /alkali environment; Water/salt water; Acid; Other solutions like gasoline, toluene
 - Mechanical resistance: Strength/stiffness degradation; Fatigue; Creep and relaxation
 - Thermal resistance: Elevated temperature; Low temperature; Freeze and thaw; Fire resistance
 - Others: UV degradation; electromagnetic exposure; radioactive exposure

- **FRP-to-concrete interfaces (bond-critical applications)**
 - Mechanical resistance: sustained load, fatigue
 - Moisture resistance: water immersion, dry/wet cycling, freeze and thaw
 - Thermal: low temperature, elevated temperature, fire
 - Combined: synergetic mechanical/environmental actions

- **FRP-confined concrete/reinforced concrete (contact-critical applications)**
 - Mechanical: sustained load, cyclic loading
 - Thermal: low temperature, elevated temperature, fire
 - Others: corrosion

For contact-critical applications, the durability issue is more relevant to the behavior of concrete and internal steel reinforcement under the protection of FRP confinement.
Overview of durability research activities in Japan

- In Year 2000, Association for Advanced Composites Technology on Construction Field (ACC) published "Investigation and Examination on the Durability of Concrete Members using FRP" based on a review of 230 technical papers. The contents covered chemical resistance, mechanical resistance, thermal properties etc. The results were mainly based upon accelerated laboratory tests.
- Since late 1980s, there has been a steady increase of the applications of FRP reinforcement as the replacement of steel reinforcement in industry-funded demonstration projects.
- Since the Great Hanshin Earthquake in 1995, there has been a rapid increase in the use of externally bonded FRP for seismic retrofit of existing concrete structures.
- Since Mid-1990s, there have been some well-planned long-term exposure tests for both internal and external FRP reinforcement as well as for the FRP-to-concrete bond.

Dr. Tamon Ueda's view:
1. FRP applications in civil engineering in Japan have not experienced long enough time.
2. Even though there are some deterioration found in applied FRP systems, these deterioration is less likely to cause significant structural damage/collapse.

My overall view:
1. The durability of FRP materials may not a critical issue for FRP-strengthened concrete structures. The durability of FRP-to-concrete bond and concrete/steel reinforcement under the protection of FRP should be a major concern.
2. There is no explicit durability acceptance criterion existing for FRP-strengthened concrete structures. It is the time that we should review carefully tremendous research efforts and practical applications completed in the past two decades.

Aging Data Available: FRP tendons

Field exposure Izu Peninsula (seaside), Japan (T = 15°C) Chiba (inland), Japan

Aging Data Available: FRP cables

- SEM, FT-IR Microscopy, and DSC analyses after exposure
- Residual tensile load

Nishizaki and Sasaki (2010, 2012)
17 years exposure (1994–2011)

Aging Data Available: Pultruded FRP plates and FRP sheets

- Tensile properties of in pultruded direction
- Tensile properties in the direction 90° to that of pultrusion
- In-plane shear properties

Nishizaki, Labossiere, Neale, Demers and Tomiyama (2011)
10 years exposure of FRP sheets

Nishizaki, Sasaki and Tomiyama (2012)
17 years exposure of FRP plates
Group A - Slide 73

Aging Data Available: FRP-to-concrete bond

Nishizaki and Kato (2011)

14 years exposure

Group A - Slide 74

Aging Data Available: FRP-to-concrete bond

Shrestha, Ueda and Zhang (2013)

Accelerated laboratory tests
Aging Data Available: FRP-to-concrete bond

Accelerated laboratory tests

Dai et al. 2010

Durability tests of FRP-strengthened RC columns

Two purposes: Laboratory vs. field performance Interface vs. member performance
Group A - Slide 77

Durability tests of FRP-confined RC columns

- Steel corrosion in FRP confined concrete columns
- Monitoring the corrosion using mini sensors

Group A - Slide 78

Test Methods for Assessing Durability of FRP/Concrete Bond Interfaces

- Pull-off test
- Three-point bending test for epoxy-concrete interface (Dai 2003; Qiao 2004; Coronado and Lopez 2008)
- Single lap shear test
- Double lap shear test (JSCE)
- Dowel/peeling test (Dai et al. 2005)
Methods for Predicting the Durability of Concrete Structures with EB-FRP

- **Molecular dynamics approach** (e.g., Buyukozturk et al. 2011)
- **Meso-scale approach** (e.g., Teng et al. 2013)
- **Finite Element Approach**
 - Quantify damage at different levels
 - Set durability acceptance criteria

Areas for future research

- **Durability of FRP materials and adhesives**
 - Effect of sample size on durability test results;
 - Development of moisture-resistant bonding adhesives;
 - Nano-technique enhanced epoxy for improvement of long-term bond performance;
 - Development of inorganic resins for improved fire resistance

- **Durability of FRP-to-concrete bond**
 - Exposure-dependent bond-slip model
 - Effects of initial stresses induced during the accelerated exposure on the test results
 - Effects of pre-conditions of concrete substrates on bond durability
 - Molecular dynamics approach for prediction of bond degradation

- **Durability of FRP-strengthened concrete members**
 - Correlation between the local bond degradation and global structural performance degradation
 - Effect of FRP intervention on durability of existing concrete structures
 - Theoretical approaches for structural durability prediction

- **Durability tests and durability design**
 - Database review and standardization of accelerated test methods
 - Similarity of laboratory and field environments
 - Round robin durability tests at a global scale
 - Explicit durability design criteria and monitoring techniques
Oregon DOT Experience with FRP

Bruce Johnson (Bruce.V.Johnson@odot.state.or.us)
Oregon DOT Bridge Section, 4040 Fairview Industrial Dr SE, MS#4, Salem, OR 97302

Group A - Slide 81

Oregon DOT Experience with FRP

Bruce Johnson (Bruce.V.Johnson@odot.state.or.us)
Oregon DOT Bridge Section, 4040 Fairview Industrial Dr SE, MS#4, Salem, OR 97302

Oregon DOT has conducted research on the use of FRP composites for shear strengthening and on durability of FRP composite materials. We have used FRP composite materials for bridge components, FRP wraps and strips used to strengthen or reinforce concrete.

Oregon DOT’s primary interest in the use of FRP in bridges has been for strengthening and rehabilitation of existing bridges. However, ODOT has used GFRP reinforcement in one new bridge application.

The presentation will cover:
1. Research on FRP composites
2. Bridge applications using FRP composites
3. Inspection and assessment or performance of FRP applications
4. Conclusions and recommendations

Group A - Slide 82
Completed Research

1. Capabilities of Diagonally-Cracked Girders Repaired with CFRP
 • June 2006, Chris Higgins, Oregon State University

2. Environmental Durability of Reinforced Concrete Deck Girders Strengthened for Shear with Surface-Bonded CFRP
 • May 2009, Chris Higgins, Oregon State University
 • Freeze-thaw applications reduce shear panel stiffness and capacity due to increased de-bonding
 • Long term moisture exposure reduced the contribution of CFRP to the overall member strength
 • ACI 440 environmental reduction factors do not fully account for losses in stiffness and strength

3. Shear Repair Methods for Conventionally Reinforced Concrete Girders and Bent Caps
 • December 2009, Chris Higgins, Oregon State University

Summary of Environmental Results

• Moisture at CFRP-concrete bond interface reduced strength

• Freeze-thaw cycling without moisture did not reduce strengths
 • Some T-specimens subjected to freeze-thaw exposure exhibited significant strength reduction
 • IT specimens did not exhibit freeze-thaw degradation because moisture was not able to infiltrate the free ends

• Fatigue combined with Freeze-Thaw increased debonding but did not reduce strength

• Epoxy injection kept moisture from freely moving through section
Summary of Environmental Results

- ACI-318 and ACI-440 provided conservative shear strength predictions
- The ACI 440 specified environmental factors were not sufficient to provide uniform levels of safety. Environmental exposure factor should always be applied to limit the effective CFRP stress/strain
- Locations with very large numbers of wet freeze-thaw cycles and extended exposure to continuous moisture may warrant even smaller environmental exposure factors

- Oregon DOT FRP Applications
 - Girder shear strengthening with CFRP Strips 32 Bridges
 - Pier cap shear strengthening with CFRP Strips 12 Bridges
 - Girder flexure strengthening with CFRP Strips 8 Bridges
 - Modular FRP bridge decks 4 Bridges
 - Deck strengthening with NSM CFRP rods 4 Bridges
 - Deck strengthening for rail LL with NSM CFRP Rods 4 Bridges
 - GFRP Reinforcement 2 Bridges
 - Pier cap flexure strengthening with CFRP Strips 1 Bridge
 - Arch rib strengthening with CFRP Strips 1 Bridge
Methods of Assessing Durability Issues of FRP

1. Visual – bulging, separations, fretting, discoloration
2. Sounding – tapping, rotary percussion tool,
3. NDT - IR Thermography
4. Check sources of moisture getting behind FRP

Age of ODOT Installations

1. FRP Shear and Flexure Strengthening 1998
2. FRP Decks 2006
3. NSM FRP 2008
4. GFRP Reinforcement 2010
Inspection and Assessment of FRP Durability

- Overall, FRP laid up construction is performing well in a variety of environment and loading cases.
- We have found a few isolated cases of small delaminations, corners peeling away, gaps on the edges of laid up construction, voids or trapped air bubbles.
- ODOT has had significant problems with early FRP deck modules, such as seam separation, attachment failure, wearing course adhesion, cracking.
- NSM FRP is universally performing well.
Topics for Further Research

1. CRFP Surface-bonded specimens with lower transverse steel shear contributions should be investigated to enable shear failure with increased CFRP shear contribution.
2. CRFP Surface-bonded specimens should be tested with minimum transverse steel requirements.
3. Specimens should be precracked prior to application of CFRP, as this is representative of field applications.
4. Specimens should be reloaded after strengthening, to produce recracking prior to environmental exposure.
5. Specimens should be strengthened and be subjected to freeze-thaw exposure in the orientation that reflects field conditions.
6. Additional data are needed for combined environmental exposure and fatigue loading.

Topics in Need of Further Research

1. Constructability details for FRP tied arch hangers and suspenders for suspension bridges
2. Constructability details for FRP cable-stayed bridges
3. Constructability details for FRP external post-tensioning repairs
4. Development lengths for FRP strand in prestressed girders
5. Prestress losses for FRP strand in prestressed girders
6. Ways to eliminate the crack in the wearing surface over butt joints in the top sheet of FRP decks
7. Better attachment details for FRP decks
International Workshop on Aging of Composites

Group B: FRP Shapes
Chair: David Scott

Aging Studies of FRP Composites at WVU-CFC

Gangarao Hota (ghota@mail.wvu.edu)
Ruifeng Liang (rliang@mail.wvu.edu)
and PV Vijay (p.vijay@mail.wvu.edu)
West Virginia University - Constructed Facilities Center, Morgantown, WV

Group B - Slide 1

Summary
This presentation highlights on-going aging studies of FRP composites at WVU-CFC:
- Accelerated and natural weathering of GFRP bars
- Fatigue life prediction at coupon and component levels
- Creep model
- Long term performance data of FRP shapes
- Future research

Based on accelerated aging test results calibrated with respect to naturally aged composites, the study concluded that the service life of the FRP rebars with concrete cover protection is up to 92 years. A Strain Energy Model has been verified thru experimental data (from CFC and others) to predict fatigue life of both composite coupons and components varying - 1) fiber/fabric architectures, 2) resin systems, 3) manufacturing methods, 4) shapes, 5) loading conditions, and 6) environments. Currently this model is being extended to describe creep response of the FRPs.

Gangarao Hota (ghota@mail.wvu.edu), Ruifeng Liang (rliang@mail.wvu.edu) and PV Vijay (p.vijay@mail.wvu.edu)
West Virginia University - Constructed Facilities Center, Morgantown, WV
Conditioning and Testing of FRPs

- Immersion bath
 - pH (salt, sea water)
 - Temperature
- Humidity/Temperature
- Sustained load
- Freeze-thaw
- Fatigue/Creep
- UV
- Combination of above
- Lab accelerated aging
- Field (natural) weathering (time: ranged from months to years)

Rebar in Alkaline Environment

Aging study of Glass Fiber Reinforced Polymer (GFRP) bars up to 3 years (1999) to evaluate Strength and Stiffness properties under:
- Salt and Alkaline Conditioning without Stress
- Salt and Alkaline Conditioning with Stress (20% to 50%)
- Salt and Alkaline Conditioning with Stress and Freeze-thaw (12 to 120°F)

Conclusion: Alkaline conditioning was more detrimental to the strength of GFRP bars over salt conditioning. Increasing temperature and stress resulted in strength reduction of GFRP bars.

Tensile stress reduction of GFRP rebars under different conditioning with sustained load

Vijay and GangaRao, 1999
Accelerated and Natural Weathering of GFRP Bars

An accelerated aging test methodology was based on Arrhenius temperature relationship to predict aging of FRP bars embedded in concrete. The ATM data was correlated with the data from natural aging of GFRP bars:

\[
\text{Age in Natural Days/ Days of Chamber Conditioning } (y) = 0.098 e^{0.0558T}
\]

where, \(T\) = Temperature in °F

- Without stress, chamber weathering of 30 months in alkaline conditioning corresponded to natural weathering of \(\sim 85\) years at Morgantown, WV.
- With 20\% sustained load, chamber weathering of 30 months in alkaline conditioning and select freeze-thaw temperatures corresponded to natural weathering of \(\sim 59\) years.

Fatigue-life Prediction Using Strain Energy Model

WVU-CFC team (Natarajan et al, 2005; Dittenber and Hota, 2010) developed a strain energy model using strain energy release rate as the damage metric to predict fatigue life of a composite material for given constituent material properties and loading conditions. This model has been extensively verified through 500 plus data (coupon and component) from WVU-CFC and others including DOE/MSU fatigue database.

- Energy release rate (Slope = dU/dN) throughout stage II is nearly linear
- Relationship between release rate and loading conditions:

\[
\frac{dU}{dN} = a \left(\frac{\varepsilon_{\max}}{\varepsilon_{\text{fail}}} \right)^b
\]

\(a\) and \(b\) are material and load-dependent constants

- Fatigue Life Prediction Model

\[
N_f = \frac{U_f - U_i}{a \left(\varepsilon_{\text{fail}} / \varepsilon_{\text{i}} \right)}
\]
Minimal experimental data needed to predict fatigue life within reasonably small error.

Predict GFRP coupon fatigue life to within 2.5% log error (~85% success rate) with 3 points.

Predict GFRP beam fatigue life to within 2.5% log error with 3 points.

The graph (left) shows the fatigue life prediction by WVU strain energy model compared to experimental fatigue data.

Creep Data and Creep Models

Sustained load induced responses (creep) play a significant role in aging of FRPs, because polymers are inherently creep. CFC studied creep/creep rupture of both thermoplastic and thermosetting polymer composites.

- Findley’s Power Law model works well for viscoelastic behavior of FRPs under constant static stress: \(\varepsilon(t) = \varepsilon_c + \varepsilon_t t^n \)
 \(\varepsilon_c \): stress- and temperature-dependent coefficient, \(n \): stress-independent material constant, \(t \): time after loading

- Miyano’s theory was also explored using static data to predict creep master curve.

Ref: Experimental Data from: Batra, 2009; [Experimental Data from: Batra, 2009](#)
Strain Energy Model for Creep Life Prediction

CFC Creep Life Prediction Model uses Strain Energy concept. Creep test can be treated as a special case of fatigue where max and min loads are similar to R = 1 and f = 0 Hz in the fatigue response equation development; however, experimental constants will be arrived at as a function of time and induced stress level. This theoretical model development is being carried out using existing data in literature and new data are needed for broad validation.

Baseline Aging Effects on Mechanical Properties of FRP Shapes (NSF Work)

In order to assess the currently available real-time aging data of pultruded FRP shapes, coupons were cut from 15 differently aged (up to 20 years) pultruded sections. These coupons were tested in tension, bending, and short beam shear:

- Average flexural strength LW 50.51 ksi
- Average flexural modulus LW 2.39 msi
- Average tensile strength LW 46.02 ksi
- Average tensile modulus LW 3.45 msi
- Short beam shear strength LW 3917 psi
- Average fiber fraction 60.7 wt% or 43.9 vol

➢ In many of the older materials, the tensile and flexural properties seem to have improved marginally with aging, potentially indicating additional curing.
➢ The short beam shear strength data exhibit higher age-induced reduction effects than tension or flexure data, i.e. matrix-driven reduction in interlaminar shear strength.
Baseline Aging Effects on Short Beam Shear Strength of FRP Shapes

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturer, Original Section, Year</th>
<th>Aged Strength (psi)</th>
<th>Original Strength (psi)</th>
<th>A/O Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>transverse CP, 4” box beam, 1993</td>
<td>4237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td>web</td>
<td>3370</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#3</td>
<td>web</td>
<td>5098</td>
<td>8177</td>
<td>62%</td>
</tr>
<tr>
<td>#4</td>
<td>transverse BRP, 4x4” I-beam, 2002</td>
<td>4139</td>
<td>1859</td>
<td>41%</td>
</tr>
<tr>
<td>#5</td>
<td>web</td>
<td>4117</td>
<td>5236</td>
<td>66%</td>
</tr>
<tr>
<td>#6</td>
<td>transverse BRP, 4x4” I-beam, 2005</td>
<td>4036</td>
<td>7040</td>
<td>60%</td>
</tr>
<tr>
<td>#7</td>
<td>transverse CP, 4x4” box beam, 2002</td>
<td>3778</td>
<td>3335</td>
<td>62%</td>
</tr>
<tr>
<td>#8</td>
<td>transverse BRP, 4x4” I-beam, 2005</td>
<td>4117</td>
<td>5040</td>
<td>89%</td>
</tr>
<tr>
<td>#9</td>
<td>web</td>
<td>4650</td>
<td>4000</td>
<td>116%</td>
</tr>
<tr>
<td>#10</td>
<td>web</td>
<td>4158</td>
<td>4287</td>
<td>99%</td>
</tr>
<tr>
<td>#11</td>
<td>transverse BRP, 4” Prodeck 4, 2006</td>
<td>3114</td>
<td>4287</td>
<td>99%</td>
</tr>
<tr>
<td>#12</td>
<td>transverse BRP, 1” sandwich, 3/16” I-beam, 2005</td>
<td>4117</td>
<td>3025</td>
<td></td>
</tr>
<tr>
<td>#13</td>
<td>transverse SW, 6x9” box beam, 2008</td>
<td>2634</td>
<td>2634</td>
<td>106%</td>
</tr>
<tr>
<td>#14</td>
<td>transverse SW, 4x8” Extrem I-beam, 2009</td>
<td>2634</td>
<td>2634</td>
<td></td>
</tr>
<tr>
<td>#15</td>
<td>transverse BRP, 3x3” box beam, 2003</td>
<td>2718</td>
<td>2718</td>
<td></td>
</tr>
</tbody>
</table>

Future Research Topics

- Develop standard durability test methods including creep
- Develop service life prediction models including degradation rate in properties
- Validate time-temperature superposition principles
- Arrive at standard procedure to determine reliable resistance factors from limited test data
- Standardize data collection after harvesting samples from in-service structures
- Establish minimum performance requirements related to durability
- Explore synergistic effects under multiple environmental factors and loading conditions
- Develop unified life prediction models for infrastructure applications using composites including manufacturing and construction variables
Composite Anti-Collision Bumper Systems and Their Durability under Multi-Environmental Factors

Wei-Qing Liu (wqliu@njut.edu.cn)
College of Civil Engineering, Nanjing University of Technology,
Nanjing 210009, P. R. China

Group B - Slide 13

International Workshop
Aging of Composites
Composite Anti-Collision Bumper Systems and Their Durability under Multi-Environmental Factors
Wei-Qing Liu (wqliu@njut.edu.cn)
College of Civil Engineering, Nanjing University of Technology,
Nanjing 210009, P. R. China

Group B - Slide 14

Research on Composite Anti-Collision Bumper Systems and Their Durability under Multi-Environmental Factors
Wei-Qing Liu (wqliu@njut.edu.cn)
College of Civil Engineering, Nanjing University of Technology,
Nanjing 210009, P. R. China

Abstract
In this paper, the composite anti-collision bumper systems using the web-reinforced FRP-foam sandwich composite units are reported. The quasi-static compression loading property of innovative composite anti-collision bumper systems indicates that the web-reinforced FRP-foam sandwich composite panel units are proposed to upgrade the peak load and energy absorption capacity. Additionally, the simplified mechanical model of ship-bridge collision system is set up. Furthermore, the typical project examples of composite anti-collision bumper systems are introduced. Moreover, the long-term performance of FRPs subjected to the chloride ion environment and a sustained load are investigated. And in that case, the tensile performance prediction models are obtained.
Research Background

- **Typical Ship-bridge Collision Accidents**
 - June 15, 2007, Gaangdong Juijiang bridge (China), the bridge was collapsed.
 - June 6, 2011, Wuhan Yangtze river bridge (China), how was a huge gap.
 - 2007, Freighter San Francisco bridge (USA), 220000 litres of oil leakage.
 - May 13, 2012, Hunan Yueyang Pingjiang fangu bridge (China), at least 6 people missing.

- **The serious ship-bridge collision accident increases every year due to the rapid growth of sailing and construction of many cross-sea or river bridges.**

- **The problems need to solve:**
 - For new bridge: impact calculation and installation of anti-collision bumper system;
 - For old bridge: review on bearing capacity and strengthen the ability against collision.

Research Background

- **The Existing Anti-Collision Bumper Systems**
 - Sand Cofferdam Protection Method
 - Large overall quality; Single construction; Less maintenance.
 - Fender Pier Piles Method
 - Suitable for small energy impact; Difficult to repair.
 - Artificial Island Method
 - Suitable for high energy impact; Nearly ¥100 million.
 - Buffer Materials Facilities Method
 - Suitable for small ships impact; The life aging: 10 years.
 - Buffer Facility Engineering Method
 - Wooden truss structure buffer systems.
 - Steel Cofferdam and Fixed Steel Box Method
 - Need to take anti-corrosion measures (20 years).
 - The Steel Rope Rubber Ring Method
 - Good protective effect in the sham condition.
 - Floating Steel Sleeve Box for Energy Dissipation Method
 - The biggest impact resistance capacity is 3000 ton ship.

- **Problems of the existing anti-collision bumper systems:**
 - Easily damaged, usually single impact, difficult to repair;
 - The ship is vulnerable to injury;
 - Steel is easy to rust, thus the cost of maintenance is high.
Research on Composite Anti-Collision Bumper Systems

- Advantages: Not only protect bridges, but also protect ships; Good toughness; Good corrosion resistant; Easy to install.
- Related technology won 2 international PCT patents and 8 related national patents authorization.
- Completed 6 bridge anti-collision bumper systems, and designed more than 150 bridge anti-collision bumper systems.

Calculation and Analysis Methods of Ship-Bridge Collision Process

- Divide the pier as \(n \) units along the pier high-direction
- Each unit as a Timoshenko beam

\[
f(t) \approx \sum_{i=1}^{n} \left[\frac{1}{2} \Re \left(F(\omega) \right) + \sum_{k=1}^{\infty} \Re \left(F(a+i) \frac{k\pi}{T} \right) \cos \left(\frac{k\pi}{T} t \right) - \sum_{k=1}^{\infty} \Im \left(F(a+i) \frac{k\pi}{T} \right) \sin \left(\frac{k\pi}{T} t \right) \right]
\]
Experimental Study of Web-reinforced FRP-foam Sandwich Composite Panel Units under Quasi-static Compression Loading

The effect of the lattice web thickness on peak load (P_u).

Test results show that at least an approximately 1300% increase in the peak load can be achieved due to the use of lattice webs. Meanwhile, the energy absorption can be enhanced by increasing lattice web thickness.

Project Example I: Fuzhou Wulong River Bridge

- The size of the structure is 11m (length) × 2m (width) × 1m (thickness);
- Largest structure manufactured by Vacuum Infusion Molding Process (VIMP);
- Bump tenon and mortise joints between segments.
Project Example Ⅱ: The North Bridge of Runyang Bridge on Yangtze River

- FEA Modelling: The North Bridge of Runyang Bridge on Yangtze River

- Contact time: 1.0s → 1.3s

- Reduce damage of bow

- 3000DWT vessel; velocity: 3m/s
- When we install the anti-collision bumper system, the maximum impact force can be reduced 34% from 19.95MN to 13.16MN

Other Project Examples of Composite Anti-Collision Bumper Systems

- Changzhou Xinmengge Bridge
- Zhangjiagang Wushan Arch Bridge
- Guangzhou-Shenzhen High-Speed Way Along the Sea Bridge
- The Huanggang Bridge (vehicle and train) on Yangtze River
- Hongkong-Zhuhai-Macao Bridge (Fixed anti-collision fender system)
Long-term Performance of FRPs Subjected to the Chloride Ion Environment and a Sustained Load

Stainless steel tank built for aging of the GFRP specimens.

SEM micrographs FRPs after 180 days aging subjected to chloride ion and 20% loading stress.

Tensile strength variation curves.

Elastic modulus variation curves.

Fitting the relationship of strain, elastic modulus, and time under different environment conditions:

Median aging formula:

\[S = S_0 + \eta \left(1 - e^{-\frac{t}{\lambda}} \right) - \beta \ln(1 + \theta t) \]

Residual strength prediction model:

Fitting the relationship between retension rate of tensile strength and time under different environment conditions:

Using regression analysis to determine the undetermined parameters combined with experimental data.

Elastic modulus prediction model:

\[E(\sigma, \epsilon) = \begin{cases}
16.040 - 38.135\sigma + (4.748 + 35.981\sigma)e^{-0.0537t} + 2.534t & (0 \leq \sigma \leq 10\%) \\
12.226 + 8.432\sigma e^{-0.00537t} + 0.003e^{-3.52t} & (10\% \leq \sigma \leq 30\%)
\end{cases} \]

Elastic modulus prediction model considering stress level and time:

\[E(\sigma, \epsilon) = \begin{cases}
(16.040 - 38.135\sigma) + (4.748 + 35.981\sigma)e^{-0.0537t} + 2.534t & (0 \leq \sigma \leq 10\%) \\
12.226 + 8.432\sigma e^{-0.00537t} + 0.003e^{-3.52t} & (10\% \leq \sigma \leq 30\%)
\end{cases} \]
Proposed Topics in Need of Further Research

- FRPs’ durability under multiple environmental factors and loading conditions
- Effective methods to collect additional data from the in-service composite anti-collision bumper systems
- Long-term performance of the composite anti-collision bumper systems
- Service life prediction models of the composite anti-collision bumper systems
- Probing a facile strategy to improve durability of the composite anti-collision bumper systems

Creep of Pultruded Fiber Reinforced Polymeric Materials in Civil Infrastructure Applications

David W. Scott (dscott@gatech.edu)
School of Civil and Environmental Engineering
Georgia Institute of Technology
Atlanta, GA 30332 USA
Fiber-reinforced polymeric (FRP) materials have demonstrated significant potential for use in civil infrastructure, including both new construction and repair. The high strength/weight ratio, resistance to many types of service exposure conditions, and tailorability of FRP materials make them an attractive alternative to traditional construction materials in a wide range of applications. However, one of the continuing challenges hindering the expanded use of these materials is the lack of well-accepted specifications and design criteria for use by practicing engineers. A fundamental understanding of the time-dependent behavior of FRP materials and structures in service is one of the core issues that needs to be addressed to allow the civil engineering community to take full advantage of the many possibilities for the use of FRP materials in infrastructure.

<table>
<thead>
<tr>
<th>Fiber type</th>
<th>GFRP</th>
<th>AFRP</th>
<th>CFRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustained plus cyclic stress limit</td>
<td>0.20 ffu</td>
<td>0.30 ffu</td>
<td>0.55 ffu</td>
</tr>
</tbody>
</table>

Eurocomp Design Code (1996):
Safety Factor $\gamma_{m,3}$ ranges from 2.5 – 3 depending on service temperature
Creep of Pultruded FRP at the Structural Level
Scott and Bennett (2012)

Examples of Modeling and Design Guidance

Prediction of Lateral Deflection in Pultruded FRP columns:

\[\delta(t) = A \left[\frac{\lambda[1+\psi(t)]}{1-\lambda[1+\psi(t)]} \right] \quad \psi(t) = \frac{t^n}{\beta} \]

Time-dependent modulus reduction:

\[E(t) = \phi(T_i, t) E_i^{i1} \]

\[\phi(T_i, t) = \left[1 + 0.22 \sinh \left(\frac{T - T_i}{\Delta T} \right) \right] + \left[1 \frac{1}{\beta} e^{160} \right] - 1 \]

Does more "accurate" always mean more complicated?
Group B - Slide 33

Work in Progress – Creep of Pultruded FRP Subjected to Pin Bearing

Group B - Slide 34

Research Needs Related to Creep/Relaxation in FRP Materials and Systems

- Development of standardized test methods and experimental criteria for determining pertinent viscoelastic response of specific FRP material systems.
- Parametric analysis of impact of manufacturing process, constituent makeup, material layup, and other critical variables on the long-term performance of FRP materials.
- Investigation of the effect of so-called “normal” service conditions on the viscoelastic behavior of FRP materials.
- Influence of combined sustained and cyclic loads on the performance of externally bonded FRP materials.
- Correlation of multi-scale investigations of the time-dependent behavior of FRP materials to identify economical approaches for reliable assessment.
- Assessment of FRP demonstration projects in the field from a time-dependent performance standpoint.
Summary
This presentation focuses on aging and durability issues of wood polymer composites (WPC). The term "wood polymer composites" as used herein includes: 1) Wood and natural fiber reinforced thermoplastic polymer composites and 2) Wood-FRP hybrid thermosetting polymer composites. Wood thermoplastic composite materials are increasingly being used for outdoor applications such as deck boards and railings because of their ability to resist moisture intrusion and better stability compared to ordinary wood material. Because of these advantages, there has been interest in using WPC material for load bearing structures. Wood members reinforced with FRP are used in a variety of structural applications. Examples of FRP-wood structural applications in civil infrastructure include: FRP-glulam beams for bridges, FRP-glulam panels for bridge decks, reinforced railroad ties, and repair of wood piles. Successful application of FRP reinforcement to wooden elements requires that a high quality, durable bond be developed between two dissimilar materials. Areas of future research needed include long term performance assessments, accelerated aging tests, modeling, and life cycle analysis of these composite systems.
Overview of critical areas of durability

- Thermoplastic-based composites (WPCs)
 - Moisture Effects
 - Reduction in strength/stiffness
 - Thermal Changes
 - Thermal expansion
 - Mechanical creep
 - Thermo-oxidative degradation
 - Weathering
 - UV degradation
 - Biological Attack
 - Decay
 - Mold

- Thermoset-based composites (FRP-wood bonding critical issues)
 - Type of reinforcement (Aramid, glass or carbon)
 - Durable & cost-effective adhesives
 - Effect of wood preservative chemicals & treatment on FRP properties
 - Environmental exposure combined with loading (synergistic effects)

Aging data available

- The Advanced Structures and Composites Center has worked extensively over a period of years developing models and design specifications for FRP-glulam bridges; evaluating the durability of FRP-glulam bridges through material level and full scale testing; and constructing, evaluating and monitoring FRP-glulam bridges.
- The Advanced Structures and Composites Center has designed and monitored over 20 demonstration bridges and piers; three of which have won national awards for their innovative features.
Aging data available

WPC Sheet pile wall installed May 2011
FRP-glulam hybrid demonstrations going back 10 to 15 years

Methods of assessing durability issues of wood polymer composites

- Thermoplastic WPCs
- Thermosets FRP-Wood
- ASTM D7199 - 07(2012)
- Standard Practice for Establishing Characteristic Values for Reinforced Glued Laminated Timber (Glulam) Beams Using Mechanics-Based Models
- JTE 2005 Performance-Based Material Evaluation of Fiber-Reinforced Polymer-Wood Interfaces in Reinforced Glulam Members
Application of the Short Beam Shear Test For Monitoring Environmental Aging Effects On Interfaces in FRP Composites

- Aqueous immersion has the largest negative impact on composite interlaminar shear strength (ILLS).
- Freeze-Thaw has an intermediate effect on ILSS as a result of aqueous exposure.
- Natural and artificial weathering is a surface effect, and doesn't impact the interface to a large extent.
- The vinyl ester matrix performs very well, the vinyl ester/polyester performs fair. It is speculated that the difference in matrix response is due to differences in diffusivity and void content.
- The ILSS test is a simple and discriminating indicator of interface durability.

Sample Testing Recommendations for wood-FRP glulam bond interfaces

1. Modifications introduced in the ASTM D 2559 standard procedures to accommodate specifics of FRP-reinforced glulam in material level tests appear to have provided an adequate qualification protocol for FRP-wood interfaces.
2. The modified test protocol can be applied to a broad variety of wood and glulam structural members with FRP-composite reinforcement. The test protocol can also be used for comparison of compatible preservative treatments.
3. Long-term field monitoring studies are necessary to determine if the accelerated test protocol and the delamination limits can be validated for assessing durability of FRP-composite reinforcement for glulam members in exterior structural applications.
4. The limit values for the cyclic delamination test need to account for the hygrothermal stresses developed at the interface of dissimilar materials (e.g., FRP-wood, as opposed to wood-wood interfaces in conventional glulams). Durability considerations of FRPs have to be integrated into design recommendations in terms of knock-down/safety factors.
Sample Life Prediction Models

Tamrakar et al. (2011) used accelerated testing methodology in terms of the time–temperature superposition principle to determine the long-term creep response of an extruded wood plastic composite sheet pile:

Quasi-static and creep tensile tests were conducted at -10, 21, 30, 45 and 65 °C. The decrease in the modulus of elasticity and the modulus of rupture with the increase in temperature was characterized. Short term tensile creep tests were conducted for 40% stress level at 21, 30 and 45 °C. The time-temperature superposition principle was implemented to model the long-term creep performance at 21 °C. The long-term creep response was predicted up to 7.9 years for the WPC material.

Fig. 9. Shifting creep curves for WPC material with 21°C as a reference temperature.

Areas in need of future research

- Thermoplastic-based composites (WPCs)
 - Fundamental research on accelerated weathering
 - Plastics and/or reinforcements for structural WPCs
 - Long term creep issues
 - Improved weathering resistance
 - Fire resistance
 - Development of improved durable WPC formulations
 - Modeling material properties of WPC products

- Thermoset-based composites (FRP-wood hybrids critical issues)
 - Adhesive systems that can adhere FRP to wood with no need for pre-treatments.
 - Wood preservative treatment effects on FRP
 - Synergistic effects in long-term performance
 - Bond model for FRP-wood interfaces

- Life cycle assessment
- Reduce life cycle energy consumption and green house gas emissions
Review of Fibre Composite Structures in Australia
Prof Thiru Aravinthan (thiru.aravinthan@usq.adu.au)
University of Southern Queensland, Toowoomba, Australia

Summary
During the past 15 years, there have been considerable activities in the research and development of fibre composites (FC) in the Australian construction industry. Areas of activity have included bridge systems, replacement of hardwood girders, marine structures and strengthening of existing structures. The Centre of Excellence in Engineered Fibre Composites (CEEFC), a Research Centre at the University of Southern Queensland (USQ) has played a leading role in these developments. This work has involved not only the initial concept development but also the construction and deployment of full-scale prototypes.

Through close involvement of major asset owners including state road and rail authorities and city councils, these technologies have evolved from initial technology demonstrators to become viable commercial alternatives to traditional structural solutions. This presentation highlights some of the past and present research and development (R&D) projects on engineered fibre composites in Australia. These projects include the development of the Australia's first fibre composite bridge, development of fibre composite bridge girders, fibre composite railway sleepers and other innovative applications of engineered fibre composites in civil infrastructure. Some of these projects were in collaboration with the Queensland Department of Transport and Main Roads and industry partners. The challenges involved in such R&D projects including future research considerations are discussed.
Fibre composite bridges

- Australia’s first fibre composite bridge
 - First fibre composite bridge in Australia (2002)
 - Taromeo Creek Bridge - first application of fibre composites in a highway bridge in Australia (2003)

Fibre composite road bridges

- Manly Road Bridge (www.wagnerscft.com.au)
 - Hawkesbury composite bridge (www.wagnerscft.com.au)
- New generation composite bridge at USQ
 - Hybrid beam with plantation timber
Fibre composite bridges

- Pedestrian bridges and walkways

Bowman Parade pedestrian bridge (www.wagnerscft.com.au)
Mackay Bluewater Environmental Trail (www.wagnerscft.com.au)

Bridge beams and Decks
Rehabilitation of timber bridges

- Replacement composite girders to timber girders

Fibre composite girder replacing timber bridge girders.

Concept 1 - WCFT girder
Concept 2 - CarbonLOC composite girder

Components - Pultruded Sections

Wagners methodology is to produce modular building components from which products for Civil Industry can be manufactured.

- 100x100
- 125x125
- 300x25

As well as other sections sourced externally.

(www.wagnerscft.com.au)
Components - CarbonLoc® Sandwich Panels

Other infrastructure projects
- Fibre composite railway sleepers
Other infrastructure projects

- Fibre composite piles
 - Timber piles replacement at Shorncliffe pier, Brisbane
 - Composite piles for Jack Evans Boardwalk, Queensland

Challenges and issues

- Wide options for materials and components
- Limited durability data on FRP composites systems
- Design codes and guidelines for all FRP/hybrid composite structures
- Subject to diverse environmental conditions (UV, high-temperature, bushfire etc)
- Design life requirements for different applications
- Education and training for civil/structural engineers in FRP composites
Areas needing further research

- Developing prediction models from materials testing to system behaviour.
- Extrapolating of materials/system characteristics from accelerated tests.
- Variability caused by different manufacturing processes.
- Effect of different environmental conditions in service life.
- Potential knowledge transfer from other industries to civil infrastructure.

FRP Composites in Texas Infrastructure – How Long Will They Perform?

Timothy E. Bradberry (Tim.Bradberry@txdot.gov)
Texas Department of Transportation
125 East 11th Street, Austin, TX 78701-2483
FRP Composites Viability Statement

"Either our material [FRP composites] must do a job that no other material can do effectively, or, for the same price, they must perform better than competitive materials, or at a lower price, they must do as good a job as alternate materials, or their unique characteristics must enable the manufacturer using them to make corollary savings not possible with other materials."

- Harold Boeschenstein, a composites industry pioneer

Durability is a significant limiting factor on the competitiveness of FRP Composites. In infrastructure applications, what other materials cannot effectively do means to, at a minimum, function for the duration of expected service life. To perform better than competitive materials demands more. For example, various types of coated or stainless steel bars have promised to slow down or practically eliminate corrosion. FRP bars, which do not exhibit galvanic corrosion, must be shown to have superior service life at the same or cheaper cost if they are to compete.

The Market Development Alliance (MDA) of the FRP Composites Industry has stated: "The composites industry is working towards the development of a comprehensive database of composites durability data for materials and products used in public civil infrastructure and relevant applications."

Assuming such data are favorable toward the durability/sustainability of FRP Composites this database will move these materials toward a more competitive position as reinforcement for public civil infrastructure.
First Structural Application of Externally Bonded FRP in Texas Bridge Infrastructure

TXDOT engineers first used FRP composites to solve a structural problem by externally bonding CFRP to the ends of inverted T bents in Houston to address stem to ledge intersection cracking. Also in 1999 a large-scale project intended to mitigate ongoing corrosion of reinforcement in 16 Lubbock bridges using GFRP wraps was completed. Skeptical bridge engineers concerns included:

1. Corrosion may actually be accelerated by the wrapping; and
2. Inspectors would not be able to assess the soundness of the underlying concrete because the members were almost completely wrapped by the bonded fiberglass material.

A subsequent research project found that the glass fiber wrap was indeed effective at reducing the rate of steel reinforcement corrosion. Regarding the bent cap application shown here, TXDOT engineers are interested in knowing just how long this CFRP is going to remain bonded or otherwise structurally effective.

Most Frequent Use of Externally Bonded FRP in Texas Bridge Infrastructure

In January 2002, the 38 year old FM 1927 bridge over IH 28 in Ward County was struck by an over-height vehicle severely damaging the 60 ft span external girder between two diaphragms. The bottom flange and the web of the girder were fractured into several pieces leaving the concrete severely damaged but the strands retaining most of their pre-impact tension. The concrete deck, top flange and portion of the girder outside the impact area were in good shape.

The restoration work consisted of repairing the damaged concrete by conventional methods and then wrapping the girder with FRP up to the slab. The purpose of the FRP wrap was to enhance the integrity of the repair. The concrete was repaired using rapid-set non-shrink grout and concrete, and epoxy injection. The FRP wrap consisted of unidirectional carbon-fiber fabric applied in a compatible epoxy resin.

Such repairs are the most frequent usage of externally bonded FRP in Texas bridge infrastructure. Scores of such repairs have been made throughout Texas over the last decade. Although, this use of FRP composites is strictly to enhance the structural integrity of the concrete, with a secondary effect of hardening the bridges against future impact, long term efficacy of the composite material and its bond to the concrete is of concern.
A Rare Use of Externally Bonded FRP in Texas Bridge Infrastructure

The Sue Creek Bridge on FM 1632 in Burleson County has two 30-ft spans and was built before 1964. The bridge was to be widened from its original width of 21.5 ft to an overall width of 32 ft. To be eligible for Federal funding for the widening it had to be strengthened to increase its load rating. The two spans were strengthened with different CFRP strengthening systems.

The first span was strengthened with longitudinally oriented CFRP fabric as the primary strengthening reinforcement and with transverse CFRP fabric strips as secondary reinforcement to control debonding. The second span (shown here) was strengthened with longitudinally oriented CFRP pultruded laminates as the primary strengthening reinforcement and with transverse CFRP fabric strips as secondary reinforcement to control debonding.

Although there has been at least one repair of an impact damaged bridge in which CRCF was used to replace the strength of a few fractured prestressing strands, this bridge is the only example, so far, in the large inventory of Texas bridges of using CFRP for flexural strengthening. Strengthening of other bridges or bridge elements have been performed but they have been to increase shear capacity.

Texas bridge engineers have more concern about the long term efficacy of the composite material and its bond to the concrete in cases of strengthening than in cases where the bonded FRP is simply enhancing the structural integrity of the repairs.

A Problem to Solve: More Than a Pot Hole

A well known Rabbi told his disciples and others that “rust doth corrupt.” And of course He was right, it does and always will. Steel reinforced bridge decks are not free from the corrupting effects of reinforcing steel corrosion. This corruption creates more than a pot hole and makes the fix much more expensive than a pot hole.

A now somewhat dated statistical analysis of the timing of bridge maintenance and rehabilitation, prepared for the Indiana Department of Transportation, indicates that bridges are replaced, for various reasons, at between 40 and 70 years of service life, decks are replaced at around 45 years, and in as little as 22 years some type of major deck work is required. If the service life of bridge decks could be increased to at least 50 years, prior to needing major maintenance, the associated costs of maintenance, rehab, or replacement could be deferred for as much as 28 years. If the cost of achieving this deck service life can be kept to a small fraction of the bridge construction cost, the life-cycle savings would be significant.

Nationally, studies indicate that serviceable bridge deck life averages from only 22 to 25 years where chlorides are present in the concrete. Texas was not included in these studies, however where de-icing salts are regularly applied to bridge decks in Texas, it is unlikely that many decks are in service for much more than 25 or 30 years before needing significant maintenance or repair as a result of corrosion induced deterioration.
A Promising Solution: Eliminate Electrochemical Corrosion Altogether By Using Non-Metallic Fiber Reinforced Polymer (FRP) Bars

For 5 spans, the deck slab is reinforced with epoxy coated steel bars. For 2 spans the top mat of reinforcement consists of GFRP bars. The complete bridge, constructed in phases, was opened to traffic in early 2001.

The jury remains out on whether the GFRP reinforced concrete deck will outperform the epoxy steel reinforced concrete deck, in being too early to tell. However, the Amarillo District has indicated that they want to build more GFRP reinforced concrete bridge decks and the Bridge Division is developing standard details for GFRP reinforced bridge decks.

In spite of interest in building additional GFRP reinforced concrete bridge decks, TxDOT bridge engineers familiar with GFRP bars prefer to see a preponderance of evidence of GFRP bars’ long term performance in concrete. They are significantly more concerned about the long term efficacy of such internally place GFRP bars—used in new construction as primary reinforcement—than they are about every other application of FRP Composites.

A Slam Dunk is When FRP Composites Perform Better than Competitive Materials, or at a Lower Price

FRP Composite material is most competitive where it’s needed for some unique property that alternative material either cannot provide or provides at a significant premium over FRP. Such is the case with the use of GFRP dowels and/or bars in the toll collection regions of Texas tollways. Loop detectors embedded in the pavement are used to detect pertinent characteristics of vehicles passing through electronically tolled lanes.

To function properly the magnetic field generating loop detectors require that the pavement not have magnetic field carrying/conductive elements. The non metallic/non conductive property of GFRP material is a perfect fit for this application and much cheaper than stainless steel bars.

There are a number of toll roads in Texas that have been built since 2000 that use GFRP material in this way. There have been many such installations under several toll authorities. Most have used a jointed concrete pavement (JCP) design with longitudinal GFRP dowels and transverse GFRP rebars but at least one has used Continuously Reinforced Concrete Pavement (CRCP) design, which is what is shown in this photo.

In the case of JCP, transmitting shear force across the joints is paramount and so long term performance of the FRP dowels is important. For CRCP, crack width and spacing are the important factors and these develop in a relatively short time making long term durability of the GFRP bars less important.

Where FRP Composite material is most competitive is where it’s needed for some unique property or properties that alternative material either cannot provide or provides at a significant premium over FRP. Such is the case with the use of GFRP dowels and/or bars in the toll collection regions of Texas tollways. Loop detectors embedded in the pavement are used to detect pertinent characteristics of vehicles passing through electronically tolled lanes. In order to function properly the magnetic field generating loop detectors require that the pavement not have magnetic field carrying / conductive elements. The non metallic / non conductive property of GFRP material is a perfect fit for this application and much cheaper than stainless steel bars. There are a number of toll roads in Texas that have been built since 2000 that use GFRP material in this way. There have been many such installations under several toll authorities. Most have used a jointed concrete pavement (JCP) design with longitudinal GFRP dowels and transverse...
GFRP rebars but at least one has used Continuously Reinforced Concrete Pavement (CRCP) design, which is what is shown in this photo.

In the case of JCP, transmitting shear force across the joints is paramount and so long term performance of the FRP dowels is important. For CRCP, crack width and spacing are the important factors and these develop in a relatively short time making long term durability of the GFRP bars less important.

Group B - Slide 67

![Experimental Indication of Durability of GFRP Bars](image)

The findings presented in the balance of this presentation will provide an indication, in terms of durability, of the efficacy of GFRP bars as reinforcement for concrete infrastructure.

Now for a little bit of dated experimental data on the durability of GFRP bars in high pH environments. The data on the next two Group B - Slides are taken from a paper I presented at the ASCE Conference Earth & Space 2004 titled, “Time-Dependent Mechanical Property Changes of Glass Fiber-Reinforced Polymers Exposed to High pH Environments," by Francisco Aguñiga, Timothy Bradberry and David Trejo.
A primary mechanism of the degradation of a GFRP bar embedded in concrete is the diffusion of alkaline laden water through the resin matrix toward the glass fibers. The rate of this diffusion and the influence of the pore solution on the tensile strength and modulus of elasticity of the GFRP bars after 26 weeks and 50 weeks of exposure was the focus of this study.

Moisture absorption tests were performed on 150 mm capped specimens to determine absorption rates, or rates of diffusion, D, for each bar type in distilled water and the calcium hydroxide solution of pH 12, respectively. The depth of penetration of the solution was assumed to follow Eq 1, developed by Katsuki and Uomoto (1995), where

\[x = D t \, \text{mm} \]

\[\sigma = \frac{1}{2} \sigma_0 \left(1 - \frac{x}{\ell} \right) \]

\[\sigma = \frac{1}{2} \sigma_0 \left(1 - \frac{x}{\ell} \right) \]

where \(x \) is the depth of penetration in mm, \(D \) is the diffusion coefficient in mm² per second, \(c \) is concentration of exposure solution in mole/liter, and \(t \) is time in seconds. Using this penetration depth Katsuki and Uomoto obtained Eq 2 for computation of the residual tensile strength due to fiber degradation, where \(\sigma_0 \), \(\sigma_p \), and \(\sigma_f \) are the tensile strength at time \(t \) in MPa, the tensile strength before exposure (i.e. time 0) in MPa, and the bar radius in mm, respectively. Katsuki and Uomoto assumed that the fibers in the region between \(\sigma_p \) and \(\sigma_f \) degrade immediately. If this model were used to predict the strength time curve of the GFRP bars in this study the bars would have no residual strength after only 1 ½ years of exposure.

But glass fibers do not immediately dissolve when exposed to water or high pH solutions. Thus, the researchers developed Eq 3 where \(c \) has been replaced by \(\lambda \), a function of \(c \) and \(t \). Using the overall average diffusion coefficient obtained from the immersion tests and fitting equation 3 to the overall lowest observed tensile strengths obtained from the tension tests, an \(f \) of 0.006 is obtained, reducing the exposure of the fibers.

Unexposed bars from 3 manufacturers were immersed in solutions pH 7 (distilled water) and 12 and then tested to failure. Exposure tests to three temperatures (31°C, 23°C and 35°C), two pH levels, for two durations (26 and 50 weeks). Fifteen specimens (5 per temp) for each combination of pH and time were tested (180 total). Fifteen unexposed bars (5 per manufacturer) were also tension tested.

Experimental data and fitted and extrapolated relative strength vs. time curve is shown here (in pink) along with three calculated mean minus 1 standard deviations. The curve in blue is fitted to these statistically calculated low fractal values. This “fit to average minus 1 standard deviations” curve is extrapolated from 50 weeks to 5 years using the time-dependent degradation model. Residual/initial-strength ratios at 3, 4, and 5 years are predicted to be 0.67, 0.65 and 0.63, respectively. The dashed line represents the strength ratio a designer following the ACI 440 guidelines would use and corresponds to a \(t_f \) of 0.7 multiplied by the guaranteed strength provided by the GFRP rebar manufacturer.

The blue curve indicates that the predicted residual strength would fall to the design strength in a little over 5 years. This indicates that either the ACI 440 environmental reduction factor of 0.7 needs to be lowered or the exposure conditions noted are more aggressive than the concrete environment. This assessment assumes that the experimental data is characteristic of the durability of the bars tested in the manner tested, if instead we were to rely on the pink curve this chart indicates that the predicted residual strength would fall to the design strength in about 7 years, not much consolation.

Exposure conditions used in this study were severe and the results indicated that until data on the residual tensile strength could be obtained from GFRP samples embedded in concrete, the strength reduction factors proposed in the ACI 440 design guidelines needed to be revised. Therefore in a separate study on GFRP bars embedded in concrete specimens for 7 years, Trijs, et al reported more favorable results. Their model predicted that for a specified bar size, the probability of not meeting the ACI 440 requirement does increase with time. However, this probability decreases as the bar size increases. In particular, in 100 years #4 bars reach a 0.44 probability of not meeting the ACI 440 requirement, #5 bars reach a 0.25 probability, and #6 bars reach a 0.10 probability.
Conclusions/Research Needs Based on Tim's Experience

- Practicing infrastructure engineers need to be educated about the appropriate and beneficial use of FRP composites.
- Uncertainties about the durability of FRP composites need to be reduced.
- Comparison of "in situ" cost between FRP composites and competing materials, such as stainless steel and ASTM A1055 rebar need to be performed and published.
- Correlate short term durability tests to long term performance of FRP rebar.
- Assess the ductility related limitations on use of FRP rebar as reinforcement in bridge elements.

Flashback

In May of 2008, John Hooks gave a presentation at the Western States Advanced Composites Workshop in Portland. He listed five challenges with regard to using FRP for bridge applications. Then, after noting eight advantages associated with FRP Composites (High Strength, Resistant to Corrosion, Resistant to Chemicals, Toughness, Lightweight, Fatigue Resistant, Ease in Fabrication, Erection, and Short Project Delivery Time), Mr. Hooks offered these two caveats:

1. Cost / Perceived Cost Disadvantage
2. Lack of Performance History
3. Lack of Design Specifications
4. Education of Bridge Engineers
5. Confidence in Adhesive Bonding

There are notable advantages to FRP Composites:

- **Durability in Service** must be proven (Jury is Still Out)
- **Material Compatibility** are addressed in Codes, Inspection Methods are Needed
- **BUT** Design Codes, Construction Specs and Inspection Methods are Needed
- **AND** Durability in Service must be proven (Jury is Still Out)

Much progress has been made over the past 13 years in addressing Mr. Hook's five challenges and his two caveats, but only one of the challenges and its corresponding caveat has been substantially met.
Group C: Test Methods and Models
Chair: Ellen Lackey

Fire Performance of Transportation Structures Incorporating FRP

Venkatesh Kodur
kodur@egr.msu.edu
Michigan State University

Group C - Slide 1

Outline
- Background - Strengthening of Structures
- Need – Fire Resistance in Transportation Structures
- Knowledge Gaps – Fire Resistance of FRP-RC Structures
- Research Needs – Fire Resistance Studies
- Conclusions

Group C - Slide 2
World-wide Problem: Deteriorating infrastructure
Emerging trend - Upgrading of infrastructure
Solution – Retrofitting and Strengthening

Feasible Solutions – EB/NSM FRP

Advantages:
- FRP: High strength, light weight
- Corrosion resistance, high durability
- EB: Ease of application
- NSM: Load is generated on all faces of FRP strip; better composite action is created
- NSM: Attention is protected by cover concrete and thus less vulnerable to accidental impact, mechanical damage and direct fire exposure
- NSM: Can easily be prestressed & also can be easily anchored to adjacent members

Disadvantages:
- Bond between concrete and FRP may not be sufficient to develop full tensile strength of FRP sheets
- Prone to the damages resulting from fire, acts of vandalism, and mechanical damage

NSM FRP strengthening
FRP strip Groove Epoxy or cement paste Concrete substrate

External FRP strengthening
FRP strip Groove Epoxy or cement paste Concrete substrate
Fire Hazard in Bridges (Transportation Structures)

- Fires cause thousands of deaths & billions of $S of damage yearly in built infrastructure
- Fire incidents in bridges can lead to:
 - Significant damage to structural members
 - Collapse of bridges
 - Substantial fire (property) losses
- Bridge fires are mainly caused by collision of vehicles:
 - High speed vehicle collisions can lead to burning of highly flammable hydrocarbon fuels.
 - High temperature induce significant capacity degradation, due to loss of strength & stiffness.
- Proper inspection & maintenance is required before the bridge is opened to traffic.
- Shutting down a bridge for maintenance will lead to significant traffic delays and losses.

Recent Fires in Bridges - US

- I-580 freeway at MacArthur Maze interchange, Oakland, CA (April 29, 2007):
 - Fuel tanker transporting 32,500 liters of fuel overturned under the bridge.
 - Intense heat (temp. around 1100°C).
 - Strength & stiffness of steel girders deteriorated leading to large deflections.
 - Significant fire induced forces in girders & connections led to partial collapse in 22 min.
 - Losses estimated at $9 million.
- I-95 Howard Avenue Overpass, Bridgeport, CT (March 23, 2003):
 - Collision between a car & a fuel tanker transporting 50,000 liters of heating oil.
 - Fire lasted for two hours & the temp. reached about 1100°C.
 - Fire caused significant buckling of steel girders & partial collapse of steel girders.
 - Fire damage costed $11.2 million.
- I-75 Expressway near Hazel Park, MI (July 15, 2009):
 - Fuel tanker carrying highly flammable fuel crashed into a truck.
 - Steel girders weakened & collapsed in 20 min.
 - Total collapse of the overpass caused significant losses & major traffic delays.
Motivation & Need

// Survey of Bridge Collapses

1876 to 2008 Survey:
- 1746 total recorded collapses;
- 1003 hydraulic failures;
- remainder shown in plot

Major Bridge Collapses due to Fires in USA

Need for Fire Resistance

- **Buildings** – Measures to mitigate destructive impact of fire
 - Fire Safety Provisions as per Building Codes
 - Fire prevention, suppression & extinction
 - Successful evacuation of occupants
 - Structural fire safety – Fire resistance

- **Bridges** – No specific measures to mitigate destructive impact of fire
 - Provision of fire resistance to structural members is key to mitigate fire hazard
 - Fire resistance expressed as the duration during which a structural member exhibit resistance to overcome fire effects

Strategies for Mitigating Fire Hazard

- **Performance of structural systems under fire conditions**
 - Fire severity
 - Material properties
 - Structural parameters and member interactions
 - Load, restraint, member interactions
FRP strengthened structures exhibit lower fire resistance since

- Fire severity can be severe
- Material properties rapidly deteriorate
- Structural parameters and member interactions complex
 - Poor bond, higher load level, spalling etc.

- Externally bonded FRP strengthening
 - FRP sheet directly exposed to fire, flammable
 - Temp. in FRP increases steeply, strength of FRP decreases rapidly
 - FRP resin burns out and debonding occurs

- Near-surface mounted FRP strengthening
 - Protected by certain thickness of concrete and adhesive, temp. in FRP increases slowly
 - Bond between FRP and concrete may remain effective for longer time
 - High temperature resistance material may be applied as adhesive (such as cementitious adhesive)

Innovative solutions needed to enhance fire resistance

Knowledge Gaps - Fire Performance of FRP

- Temp. dependent property data for FRP
 - Limited data beyond Tg
 - Lack of data on bond strength at high T
 - Variation – Various resin-matrix combinations

- Fire Tests/Numerical Studies – FRP-RC members
 - Limited fire tests (since 2000)
 - Standard fire conditions - ratings
 - Limited numerical studies (since 2010)
 - Canada, USA, Europe, Far East
 - Lack of comprehensive understanding

- Code Provisions for Fire Design
 - Provisions for ambient design
 - No guidance for fire design
 - Neglects strength contribution of EB-FRP
 - No provisions for NSM FRP
 - No rational design methodology
 - No studies specific to transportation structures
 - No data of effect of aging of FRP on fire performance

Need for Fire Resistance

![Graph showing fire resistance comparison between EB and NSM in fire](image)
Research Needs

Fire Resistance Studies – FRP Structural Members

- Characterization of fires in transportation structures
- Material properties of FRP at el. temp.
 - aging effects
- Expt. studies on FRP-RC members
 - Columns, Beams, Slabs
 - FRP reinforcement: IR, EB, NSM
- Computer models
 - Trace fire response till failure
- Parametric studies
 - Critical factors influencing fire response
- Rational methodology for fire design
- Design guidelines
 - Fire scenarios
 - Required practical fire ratings
 - Optimum protection strategies

Conclusions

- **Fire represents a severe hazard & can lead to significant damage to transportation structures** (bridges).

- There are serious fire performance problems with FRP & significant knowledge gaps on fire performance of FRP-strengthened RC structures.

- FRP is a combustible material and experiences significant loss of properties at relatively low temperatures as compared to concrete and steel. Further, bond strength and modulus of NSM FRP system decrease rapidly with temp., and only 20% is retained at 200°C.

- Provision of fire resistance to structural members is key for enhancing fire safety of transportation structures incorporating FRP.

- Through fire resistance experiments & advance calculation models it is possible to develop unique strategies for enhancing fire performance of transportation structures incorporating FRP.
Advanced Test Methods for Evaluating the Durability Performance of FRP Materials

Graduate Student Bryant Miller (blmille2@ncsu.edu)
Graduate Student Milad Hallaji (mhallaj@ncsu.edu)
Professor Mohammad Pour-Ghaz (mpourgh@ncsu.edu)
NC State University, Constructed Facilities Laboratory
2414 Campus Shore Dr. Raleigh, NC 27695
Professor Sami Rizkalla (sami_rizkalla@ncsu.edu)

Group C - Slide 13

Advanced Test Methods for Evaluating the Durability Performance of FRP Materials

Graduate Student Bryant Miller (blmille2@ncsu.edu)
Graduate Student Milad Hallaji (mhallaj@ncsu.edu)
Professor Mohammad Pour-Ghaz (mpourgh@ncsu.edu)
NC State University, Constructed Facilities Laboratory
2414 Campus Shore Dr. Raleigh, NC 27695
Professor Sami Rizkalla (sami_rizkalla@ncsu.edu)

Group C - Slide 14
Summary

This presentation focuses on aging and durability issues of commercially available pultruded glass composites, consisting of either a vinylester or polyester matrix. During their service life, these FRP materials are subjected to a combination of mechanical and environmental loadings that may degrade their mechanical properties. Previous studies have investigated the effects of various environmental conditionings such as different types of solutions, temperature, accelerated aging, and loading conditions. However, data on the synergistic effect of all aggressive agents, temperature, and mechanical loading are scarce. There is a need to fundamentally understand the nonlinear coupling of environmental and mechanical loadings. Future research needs to address and study the synergistic effects of various conditionings, establish mechanistic models for degradation mechanisms, develop fundamental test methods to quantify damage in FRP materials, and determine the life cycle performance of the composites.

Overview of critical areas of durability

- Accelerated Aging
 - Understanding the mechanism changes due to accelerated aging
- Effects due to Solutions
 - Chemical/physical effect of solutions
- Freeze-Thaw Conditioning
 - Rate dependence
- Synergistic Effects
 - Understanding the effect of cracks on acceleration of degradation
 - Methods to model the effect of cracks and discontinuities
 - Interface engineering
 - Multi-physics multi-scale modeling to understand nonlinear coupling of mechanical and environmental loadings
- Fundamental Test Method
 - Rapid and mechanistic method
 - Field and lab
Synergistic conditioning of samples

Conditioning Parameters
Accelerated aging at 60°C is being performed on specimens, and the effect of solution (freshwater and saltwater) is being studied under sustained loading (0, 10, 20, or 30 percent of ultimate tensile stress). Mechanical tests are being performed to understand the nonlinear coupling effects of these parameters. Advanced test methods, such as acoustic emission, are being utilized to understand the effect of accelerated aging on interfaces within the FRP.

Methods of assessing durability issues: Acoustic emission
Acoustic emission testing is being performed on FRP specimens with the goal of using this test method to understand the effect of aging, mechanical loading, and exposure to aggressive agents on the failure of different constituents of the composite. Using waveform analysis, this test method can be used to potentially differentiate between matrix cracking, fiber cracking, and interface cracking. It is hypothesized that degradation of different phases will result in frequency shifts and therefore acoustic emission might provide a fundamental and rapid method for quantifying damage due to aging.
Methods of assessing durability issues: Preliminary acoustic emission results

Preliminary results show that there are two/three distinct frequency ranges emitted from FRP during tensile loading. It is postulated that matrix cracking corresponds to the lower frequency band and occurs more distributed along the dog-bone gage length and tapered regions. It is also postulated that fiber breakage corresponds to the higher frequency band and occurs locally at the tapered region where the sample ultimately fails. Some preliminary results are shown below. More analyses are being currently performed to fully understand these effects.

Methods of assessing durability issues: Electrical Resistance Tomography (ERT)

ERT is a model-informed imaging modality that reconstructs spatial conductivity (σ) (or alternatively resistivity) distribution of an object. This is accomplished by physically measuring the electrode potentials at the boundaries of the object under the influence of an applied current. The current is applied (or injected) between different pairs of boundary electrodes and the resulting electrical potential differences across the remaining pairs of electrodes are measured. This test method is being investigated as a potential test method for damage detection in CFRP materials. In this method inverse problems are utilized to reconstruct the conductivity distribution within materials.
Methods of assessing durability issues:
Electrical Resistance Tomography (ERT)

Preliminary results indicate that ERT can be used for damage detection in CFRP materials. Advanced computational and numerical methods for ERT currently being developed at NC State to extend this method for damage detection in large geometries and to account for the anisotropic conductivity distribution. Different fiber architecture are being used to fully realize the feasibility of this method for damage detection in CFRP materials.

Areas in need of future research

- Study the synergistic effects of mechanical and environmental loadings
- Develop multi-physics multi-scale models that can model the nonlinear coupling between mechanical and environmental loadings
- Quantify the behavior of FRP composite constituents at both the micro- and macro-scales
- Establish fundamental understanding of the deterioration mechanisms and understand how acceleration of aging affects the mechanisms of degradation
 - This will help develop better acceleration methods and the results of accelerated test methods can be better correlated to naturally aged samples
- Develop models for service life prediction of FRP materials
- Develop fundamental test methods for durability performance characterization
- Life cycle assessment (LCA) of FRP so that sustainability of FRP materials and structures can be fundamentally quantified
- Development of exposure sites
Determining Characteristic Values of Pultruded Composites Exposed to Environmental Conditioning for use with the LRFD Standard

Ellen Lackey (melackey@olemiss.edu)
Professor, Mechanical Engineering
University of Mississippi

The LRFD Pre-standard provides guidelines for various aspects associated with the use of pultruded composites for structural design. For example, guidelines are provided for the constituent materials used for the manufacture of pultruded FRP components and systems used in the structural design of buildings and other structures. In addition to requirements for constituent materials used in the manufacture of the pultruded composites, minimum physical and mechanical property values which the pultruded composites must meet are specified.
Requirements for Durability and Environmental Effects Provided in Section 1.3.4 of the LRFD Pre-standard for Pultruded Composites

Unless the glass transition temperature determined in accordance with ASTM D4065 and the tensile strength of the composite in the longitudinal and transverse directions determined in accordance with ASTM D638, can be shown to retain at least 85% of their characteristic values after conditioning in the environments listed below, the nominal strength and stiffness shall be reduced in accordance with Section 2.4.4(a). Materials that cannot retain at least 15% of their characteristic values after conditioning in the environments listed below shall not be permitted.

1. Water: Samples shall be immersed in distilled water having a temperature of 100 ± 3°F (38 ± 2°C) and tested after 1,000 hours of exposure.

Alternating ultraviolet light and condensing humidity: Samples shall be exposed according to Cycle No. 1 (0.89W/m²/m², 8 hours UV at 60°C, 4 hours condensation at 50°C) using UVA*340 lamps in an apparatus meeting the requirements of ASTM G154. Samples shall be tested within two hours after removal from the apparatus.

Alkali: Where required, the sample shall be immersed in a saturated solution of calcium hydroxide (pH ≥ 11) at ambient temperature of 73 ± 3°F (23 ± 2°C) for 1000 hours prior to testing. The pH level shall be monitored and the solution shall be maintained as needed.

Freeze-thaw: Composite panels or coupons shall be exposed to 100 repeated cycles of freezing and thawing in an apparatus meeting the requirements of ASTM C666.¹

¹Pre-Standard for Load & Resistance Factor Design (LRFD) of Pultruded Fiber Reinforced Polymer (FRP) Structures (Final), ASCE, November 9, 2010.
Adjustments to Reference Strength Provided in Section 2.4.4 of the LRFD Pre-standard for Pultruded Composites

Table 2.4.4 Adjustment factors for use with temperature

<table>
<thead>
<tr>
<th>Reference Property</th>
<th>Moisture</th>
<th>Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C_a</td>
<td>50°C + 5°C (°F)</td>
</tr>
<tr>
<td>Flexural strength</td>
<td>0.90</td>
<td>19 - 0.009°F</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>0.90</td>
<td>19 - 0.009°F</td>
</tr>
<tr>
<td>E-modulus</td>
<td>0.90</td>
<td>19 - 0.009°F</td>
</tr>
</tbody>
</table>

C_a = structural adjustment factor determined by the manufacturer or supplier; C_b = temperature factor in Table 2.4.4 to account for a manufacturing temperature higher than 40°F (5°C) but less than 120°F (49°C). For elevated temperatures in excess of 120°F (49°C), C_b shall be determined from tests stipulated by the Engineer of Record.

Adjustments to Reference Strength

- Conditioning protocols intended specifically to address the requirements for the LRFD Pre-standard do not currently exist.
- These protocols are needed to allow uniform comparison of materials under the LRFD standard.
- 100°F Water Immersion and Freeze-Thaw Conditioning protocols to specifically address the conditioning requirements from the LRFD Pre-standard are currently under development by ASTM D20.18.02.
- Alkali/oxygen corrosion conditioning requirements are under discussion and may have protocols developed to address these.
Examples of Details TBD for 100°F Water Immersion Conditioning Protocol

Water: Samples shall be immersed in distilled water having a temperature of 100 ± 3°F (38 ± 2°C) and tested after 1,000 hours of exposure.

- Coated or non-coated cut surfaces for conditioned samples
- Machining of samples before or after exposure
- Sampling locations
- Allowable time window from removal of material from conditioning bath until samples are tested
- Mechanical property test method to be used to evaluate environmental effects
- Stagnant or circulated water

Examples of Details TBD for 100°F Water Immersion Conditioning Protocol

- Coated or non-coated cut surfaces for conditioned samples
- Machining of samples before or after exposure
- Sampling locations (random but known)
- Allowable time window from removal of material from conditioning bath until samples are tested (4 hours)
- Mechanical property test method to be used to evaluate environmental effects (D638 tension testing as per LRFD Pre-standard)
- Stagnant or circulated water
Example Data - Comparison of Average Values and Characteristic Values (ASTM D7290) of Tensile Strength (ASTM D638) Data for As-Pultruded and 100°F Distilled Water Conditioned Pultruded Composites

<table>
<thead>
<tr>
<th>Material</th>
<th>As Received - No Environmental Conditioning</th>
<th>Conditioned in 100°F Distilled Water Immersion Bath for 1000 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Characteristic Value (ksi)</td>
<td>Average (ksi)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-glass/Polyester Pultruded Composite Plate</td>
<td>34.9</td>
<td>45.6</td>
</tr>
<tr>
<td>E-glass/Vinyl Ester Pultruded Composite Plate</td>
<td>33.4</td>
<td>43.3</td>
</tr>
</tbody>
</table>

Future Research Needs/Directions for this Area

- 100°F Water Immersion and Freeze Thaw Conditioning protocols to specifically address the conditioning requirements from the LRFD Pre-standard are currently under development by ASTM D20.18.02 – Continued development of these and other protocols are needed to support the LRFD standard for pultruded composites

- Alkali/other corrosion conditioning requirements are under discussion and may have protocols developed to address these – Additional protocols will be needed or existing protocols may need to be modified as new developments are incorporated into existing design standards
Accelerated Testing Methodology for Long-Term Life Prediction of Polymer Composites

Masayuki Nakada (nakada@neptune.kanazawa-it.ac.jp) and Yasushi Miyano
Materials System Research Laboratory, Kanazawa Institute of Technology
3-1 Yatsukaho, Hakusan, Ishikawa 924-0838, Japan

Summary

We have proposed a general and rigorous advanced accelerated testing methodology (ATM-2) which can be applied to the life prediction of CFRP exposed to an actual load and environment history based on the three conditions. One of these conditions is the fact that the time and temperature dependence on the strength of CFRP is controlled by the viscoelasticity of matrix resin. The tensile and compressive static strengths in the longitudinal and transverse directions of two kinds of unidirectional CFRP under wet condition are evaluated using ATM-2. The applicability of ATM-2 and the effect of water absorption on time and temperature dependence of these static strengths are demonstrated.

Acknowledgements

The authors thank the Office of Naval Research for supporting this work through an ONR award with Dr. Yapa Rajapakse as the ONR Program Officer. The authors thank Prof. Richard Christensen, Stanford University as the consultant of this project.
Group C - Slide 35

Necessity of accelerated testing based on the viscoelasticity of matrix resin

- Data collection by accelerated testing
- Durability design
- Development of high reliable structures

Viscoelastic behavior

- Laminates
- Fiber & Resin
- Molecular chains

10m 10nm

Group C - Slide 36

Master curve of static strength of CFRP versus time to failure at a reference temperature

\[
\log s_f(t', T_0) = \log s_f(0) + \log s_f(A) \left(P_{f_0} \right) + \log s_f(B) \left(D^* \right)
\]

- \(s_f \): Static strength at reference time determined by types of fiber and weave, volume fraction, load direction and others
- \(P_{f_0} \): Scatter of strength as a function of failure probability \(P_f \) determined by types of fiber and weave, volume fraction, load direction and others
- \(D^* \): Strength degradation determined by the viscoelasticity of matrix resin \(D^* \)
The master curve of static strength of CFRP can be shown by the following equation based on conditions of A and B.

\[
\log \sigma_f(P, T, t) = \log \sigma_f(1, T, 1) + \frac{1}{\alpha} \log \left[\ln(1 - P_f) \right] - \eta \log \left(\frac{D^*(f, T_0)}{D^*(1, T_0)} \right)
\]

The first term shows the scale parameter for static strength at reference temperature \(T_0\) and reduced reference time \(t_0\).

The second term shows Weibull distribution as a function of failure probability \(P_f\). \(\alpha\) is shape parameter for static strength. (Condition A)

The third term shows the variation of static strength by the viscoelastic compliance \(D^*\) of matrix resin which is determined by the creep compliance \(D_c\) of matrix resin and temperature and load histories of CFRP. \(\eta\) is material parameter determined by failure mechanism. (Condition B)

Condition A
The failure probability is independent of temperature and load histories.

Condition B
The time and temperature dependency of strength of CFRP is controlled by the viscoelasticity of matrix resin. Therefore, the time-temperature superposition principle for the viscoelasticity of matrix resin holds for the strength of CFRP.

Procedure of accelerated testing

Matrix resin
- Viscoelastic tests at various times and temperatures
- Master curve of creep compliance \(D_c\)
- Time-temperature shift factor (Acceleration rate) \(\alpha_{D_c}\)

CFRP
- Static tests at a constant strain rate and various temperatures
- Master curve of static strength
- \(\sigma_f \propto \eta\)

Steps

1. Determination of \(\alpha_{D_c}\) and \(D_c\) for matrix resin
2. Determination of \(\alpha\), \(\eta\) for CFRP
Configuration of test specimens

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Thickness</th>
<th>Fiber direction</th>
<th>Curing and drying in air</th>
<th>Water absorption in water</th>
<th>Water content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry</td>
<td>1mm & 2mm</td>
<td>0° & 90°</td>
<td>125°C×24h + 150°C×2h</td>
<td>-</td>
<td>0 wt%</td>
</tr>
<tr>
<td>Wet</td>
<td>1mm</td>
<td>0°</td>
<td>25°C×24h + 150°C×2h</td>
<td>95°C×25h</td>
<td>0.7 wt%</td>
</tr>
<tr>
<td></td>
<td>2mm</td>
<td>0°</td>
<td>25°C×24h + 150°C×2h</td>
<td>95°C×25h</td>
<td>0.5 wt%</td>
</tr>
</tbody>
</table>

Determination of TTSF from tan δ in transverse direction of unidirectional CFRP

Time-temperature shift factor:

\[
\log_{10}(T) = \frac{\Delta H}{2.303} \left(\frac{T_g}{T_0} - 1 \right)
\]

- \(\Delta H\): Activation energy, \(T\): Temperature, \(T_g\): Glass transition temperature, \(T_0\): Reference temperature
- \(a_{\text{TTSF}}\): Time-temperature shift factor,
- \(G\): Gas constant

115
Temperature shift factor:

\[
T_{bi} = \frac{T - T_0}{T_g - T_0}
\]

where:
- \(T_{bi} \): Temperature shift factor
- \(T \): Temperature
- \(T_0 \): Reference temperature
- \(T_g \): Glass transition temperature

Creep compliance

The creep compliance \(D_c \) for matrix resin is back-calculated from that for CFRP using the rule of mixture (approximate averaging method).

\[
D_c(t) = \frac{1}{E(t)}
\]

The creep compliance \(D_c \) for matrix resin is back-calculated from that for CFRP using the rule of mixture (approximate averaging method).

\[
D_c(t) = \frac{1}{E(t)}
\]

Master curves of static strength of unidirectional CFRP

\[
\log \sigma_r(P, t, T) = \log \sigma_0(P_0, T_0) + \frac{1}{\alpha} \log [-\ln(1 - P)] - \eta \log D_r(T, T_0)
\]

The master curves of static strength under wet condition as well as dry condition can be constructed and formulated based on ATM.

Static strength of unidirectional CFRP versus viscoelastic compliance of matrix resin

The time, temperature and water absorption dependencies of static strength of unidirectional CFRP can be determined by the viscoelastic behavior of matrix resin.
Areas in need of future research

Thermoset-based composites (FRP)
- Applicability of accelerated testing methodology to the fatigue life
- Evaluation for the scatter of the strength data to predict accurately the long-term life
- Effects of physical aging and chemical degradation of matrix resin

Thermoplastic-based composites (FRTP)
- Applicability of time-temperature superposition principle (TTSP) to the viscoelastic behavior of matrix resin
- Applicability of TTSP to the static, creep, and fatigue strength of FRTP
- Effect of moisture
- Effects of physical aging and chemical degradation of matrix resin

Compressive Behaviour of Composites: Laboratory-based accelerated ageing

Prof. Costas Soutis PhD, CEng, FIMechE, FRAeS, FIM, AFAIAA
constantinos.soutis@manchester.ac.uk
Chair of Aerospace Engineering
Director of the Aerospace Research Institute
University of Manchester, Manchester, UK
Keywords: Composite laminates; Compressive strength; Shear strength; Environmental degradation; Hygro-thermal effects; Open hole compression; Fibre microbuckling.

References

ABSTRACT

The talk will present recent experimental and analytical results on the compressive and in-plane shear response of T800/924C carbon fibre-epoxy composite laminates (currently available for aerospace structural applications) exposed to hot-wet environments. The weight gains, maximum moisture contents and diffusion coefficients of unidirectional and various multidirectional laminates immersed in boiling water (accelerated ageing) were measured in earlier work [1-3] and briefly will be reported here. Data will also be presented on the effects of moisture and temperature on the uniaxial compressive strength/failure mode of unidirectional laminates and multidirectional plates with an open hole. It will be shown that the failure in the hot-wet specimens always occurs as a result of out-of-plane microbuckling of the 0° plies. This is attributed to the reduction in matrix strength properties and weakening of the ply interface arising from elevated temperatures and environmental conditioning. Test results will be compared to theoretical predictions made by the Budiansky fibre microbuckling model and the Soutis-Fleck cohesive zone model for the open hole (notched) compressive (OHC) strength.

Keywords: Composite laminates; Compressive strength; Shear strength; Environmental degradation; Hygro-thermal effects; Open hole compression; Fibre microbuckling.

References

Group C - Slide 49

Outline

- Background
 - Damage mechanisms in composites
 - Fibre microbuckling
 - Fibre kinking
 - Moisture absorption
 - Shear
 - Compression, UD
 - Open hole compression
- Damage Zone Modelling
- Concluding remarks
What are the benefits?

- Weight saving compared to aluminium alloys
- High strength and stiffness (3 to 6x higher than Al-Zn-Mg alloy)
- Tailored directional mechanical properties - complex shapes and contours easily accomplished
- Reduced part count over metallic equivalent
- Reduced machining
- Non-corroding in aggressive environments
- Excellent fatigue resistance
- Potential for embedded functionality (damage sensing etc)

Damage Mechanisms under Tension

- **Matrix Cracking** causes degradation of the overall stiffness properties of the laminate
- Triggers development of other damage modes, delamination and fibre breakage
- Accelerates moisture absorption

Damage Mechanisms under Compression

Compressive failure of laminates occurs by fibre microbuckling that may lead to fibre kinking of 0°-plies, accompanied by delamination.

Fibre microbuckling followed by fibre kinking

Kink band in a multidirectional T800/924C laminate

Carbon fibre failure modes

a) in-plane
b) out-of-plane

Modelling of fibre microbuckling

Equilibrium equation:

\[E_1 \frac{d^4(v - v_0)}{dx^4} + \frac{A_e \sigma_{eff}}{V_f} \frac{d^2v}{dx^2} - 2 \frac{d \tau_y}{dx} \left[\frac{dr_{in}}{dy} \right]_y (v - v_0) \frac{d^2(v - v_0)}{dx^2} = 0 \]

Non-linear differential equation that gives the compressive stress \(s_0 \) in the 0°-ply in terms of fibre maximum buckling amplitude \(v \) and fibre waviness \(v_0 \).

Moisture absorption

- The epoxy resin absorbs moisture while the fibres do not.
- Most of the evidence in the literature suggests that water is absorbed by a bulk diffusion mechanism in the resin.
- For flat plates the rate of moisture absorption through the thickness direction can be described by Fick’s second law.

Equilibrium moisture content \(M_{\infty} = 1.42\% \)

Table 1. Coefficient of moisture diffusion for T800/924C

<table>
<thead>
<tr>
<th>Diffusivity mm²/s</th>
<th>([0°]_T)</th>
<th>([\pm45°/0°]_L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>8.42x10⁻⁷</td>
<td>9.3x10⁻⁷</td>
</tr>
</tbody>
</table>
Compressive & Shear strength properties of T800/924C unidirectional laminates

<table>
<thead>
<tr>
<th>Test Temperature °C</th>
<th>Compressive Strength MPa</th>
<th>Young’s Modulus GPa</th>
<th>Shear Strength MPa</th>
<th>Shear Yield Stress MPa</th>
<th>Shear Modulus GPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-dry</td>
<td>1415 (1341)</td>
<td>160</td>
<td>110</td>
<td>40</td>
<td>0.0</td>
</tr>
<tr>
<td>20-wet</td>
<td>1000 (1096)</td>
<td>-</td>
<td>69</td>
<td>(28.5)</td>
<td>(5.4)</td>
</tr>
<tr>
<td>50-dry</td>
<td>1120 (1255)</td>
<td>155</td>
<td>105</td>
<td>35</td>
<td>5.4</td>
</tr>
<tr>
<td>50-wet</td>
<td>950 (1077)</td>
<td>-</td>
<td>(79)</td>
<td>(26)</td>
<td>(5.4)</td>
</tr>
<tr>
<td>80-dry</td>
<td>1117 (1326)</td>
<td>149</td>
<td>98</td>
<td>32</td>
<td>5.4</td>
</tr>
<tr>
<td>80-wet</td>
<td>828 (929)</td>
<td>-</td>
<td>69</td>
<td>(23)</td>
<td>(4.9)</td>
</tr>
<tr>
<td>100-dry</td>
<td>913 (1033)</td>
<td>136</td>
<td>90</td>
<td>28</td>
<td>4.9</td>
</tr>
<tr>
<td>100-wet</td>
<td>634 (694)</td>
<td>-</td>
<td>(54)</td>
<td>(18.5)</td>
<td>(4.5)</td>
</tr>
</tbody>
</table>

Theoretical predictions $\theta_f=1.75^\circ, \theta_s=15^\circ$

Compressive failure of a CFRP plate with a hole

Fibre microbuckling in a T800/924C Laminate (6mm fibre diameter)
Open Hole Compression

Compressive strength results for T800/924C laminates with a 5mm hole.

<table>
<thead>
<tr>
<th>Test temp</th>
<th>Exp OHC MPa [15 45 0 L]</th>
<th>Predicted OHC MPa [15 45 0 L]</th>
<th>Exp OHC MPa [90 0 90 L]</th>
<th>Predicted OHC MPa [90 0 90 L]</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-Dry</td>
<td>451.75</td>
<td>342.0</td>
<td>351.65</td>
<td>290.9</td>
</tr>
<tr>
<td>20-Wet</td>
<td>402.00</td>
<td>293.6</td>
<td>-</td>
<td>232.0</td>
</tr>
<tr>
<td>50-Dry</td>
<td>421.50</td>
<td>309.6</td>
<td>324.67</td>
<td>259.7</td>
</tr>
<tr>
<td>50-Wet</td>
<td>357.50</td>
<td>259.0</td>
<td>-</td>
<td>211.2</td>
</tr>
<tr>
<td>80-Dry</td>
<td>371.50</td>
<td>293.9</td>
<td>351.67</td>
<td>290.9</td>
</tr>
<tr>
<td>80-Wet</td>
<td>328.00</td>
<td>241.2</td>
<td>-</td>
<td>195.1</td>
</tr>
<tr>
<td>100-Dry</td>
<td>-</td>
<td>265.5</td>
<td>-</td>
<td>217.5</td>
</tr>
<tr>
<td>100-Wet</td>
<td>282.00</td>
<td>208.3</td>
<td>-</td>
<td>167.6</td>
</tr>
</tbody>
</table>

\[G_c = 2 \int \sigma(v) dv \sigma_{\text{yield}} v \]

\[J = \frac{1}{4} \left(\frac{v_f}{v_c} \right)^{0.5} \times 64 \left(\frac{v_f}{v_c} \right)^{0.33} \]

For the T800/924C \((\pm 45, 90)_L\)

\(2v_c=56 \text{ mm}, \quad G_c=22.74 \text{ kJ/m}^2 \)

\(20-\text{Dry conditions} \)

Damage Zone Modelling

- The DZ is treated as an equivalent crack
- The traction distribution describes the load transfer characteristics of the damage zone
- Damage propagation is controlled by traction law and applied loading
- Three experimentally measured phenomena are predicted with a consistent physically-based model: DZ growth, critical length, ultimate failure load
Concluding Remarks

- Composite Materials properties are excellent
 - But still challenges to be met, especially when tested in hot-wet environments
- Fickian diffusion is sufficiently accurate for the cases examined
- The strength properties of specimens tested in hot-wet conditions were substantially reduced
 - In hot-wet environments final failure always occurred due to out-of-plane fibre microbuckling

Priority Topics on composites:

- Joining and Joints, NDT, Repair, Recycling/Disposal

Composites Design

- Confidence in failure criteria is low, need to include manufacturing defects

References

FDOT’s Experience with Material Durability and its Application to Polymers

Mario A. Paredes, PE (mario.paredes@dot.state.fl.us)
State Corrosion Engineer
Corrosion Research Laboratory
Structural Materials Unit
State Materials Office
Florida Department of Transportation
Gainesville, FL

Group C - Slide 62

FDOT's Experience with Material Durability and its Application to Polymers

Mario A. Paredes, PE (mario.paredes@dot.state.fl.us)
State Corrosion Engineer
Corrosion Research Laboratory
Structural Materials Unit
State Materials Office
Florida Department of Transportation
Gainesville, FL

Group C - Slide 63
Definitions

- **Service Life**: As per SHRP2 R19A, the time duration during which the bridge element, component, subsystem, or system provides the desired level of performance or functionality, with any required level of repair and/or maintenance.

- **Target Design Service Life**: The time duration during which the bridge element, component, subsystem, and system is expected to provide the desired function with a specified level of maintenance established at the design or retrofit stage.

- **Design Life**: The period of time on which the statistical derivation of transient loads is based: 75 years for the current version of AASHTO LRFD Bridge Design Specifications (2012).

FDOT is one of a few DOT with a section dedicated to service life.

Responsibilities

- Ensure materials can achieve required service life
- Corrosion of Rebar embedded in concrete
- Metal pipe
- Plastic pipe – PVC, HDPE, PP
- ADA Mats
- Composite Rebar
- Composites in general – Fender piles, signs and posts
Research

All work focuses on developing testing program for product approval

Completed
- HDPE Service Life – Grace Hsuan, Drexel University

In progress
- FRP reinforcement – Brahim Benmokrane, Sherbrooke University
- UV of polymers – Grace Hsuan, Drexel University

Future
- FRP resin degradation – Future project
- FRP fiber degradation – Future project
- Polymer Hydrolysis degradation – Future project
- Polymer Oxidation Degradation – Future project
Group D: Degradation and Life Prediction Models

Chair: Charles Bakis

Aging Mechanisms in Polymers and their Composites: Molecular-level Responses

Rakesh K. Gupta (Rakesh.Gupta@mail.wvu.edu)
Department of Chemical Engineering and Constructed Facilities Center
West Virginia University
Morgantown, WV 26506-6102

Summary

This presentation examines the factors that influence the durability of fiber-reinforced plastics used for infrastructure applications. It is suggested that a combination of moisture ingress, increase in temperature and the application of mechanical stress is responsible for structural damage and failure. The individual degradation processes are explained and areas of future research are identified.
Causes of Degradation of FRP Composite Materials

- Thermal Aging
- Atmospheric humidity
- Water immersion
- Wet/dry cycling
- Freeze-thaw cycling
- Contact with chemicals: Salt, Deicing chemicals, Alkalis, Acids
- Application of Mechanical Stress: Creep and Fatigue
- Ultraviolet and other radiation
- Fire

More than one degradation agent may act at the same time

Temperature and Humidity changes and mechanical loading are probably the most important for durability of FRPs in Infrastructure Systems. Flammability requires separate treatment

Detecting Degradation of FRP Composite Materials

- Non-destructive
 - Ultrasonic testing
 - X-ray refraction topography
 - Infra-red thermography
 - Eddy current
 - Electrical resistance/conductivity

- Destructive
 - TEM
 - SEM (including with vacuum)
 - Differential scanning calorimetry
 - Dynamic mechanical analysis
Reversible Changes – Simplest Situation

- Uniform changes in temperature (no temperature gradients): Stress-strain behavior of composite is predictable. Need physical properties as a function of temperature. Matrix may become viscoelastic.

- Uniform changes in moisture concentration (no concentration gradients): Polymer glass transition temperature changes, often by tens of degree Celsius. The matrix polymer can swell; extent of swelling depends on thermodynamic properties. Stress-strain behavior of composite is predictable. Need physical properties as a function of concentration.

- Time scales of temperature and moisture concentration changes: These can be predicted by solving the heat conduction equation and Fick’s law of diffusion.

Thin samples reach equilibrium faster than thick samples. Transients can be ignored only for well-designed model experiments.
Irreversible Changes upon Increasing Temperature

- **Polymer Matrix:**
 - Physical aging can cause some shrinkage since material tends to equilibrium.
 - Post-curing occurs above Tg. Can cause an increase in molecular weight. Modulus will increase slightly, ductility will decrease slightly.
 - Thermoplastics can crystallize.
 - Thermal oxidation can lower molecular weight. Can lead to deterioration in mechanical properties.

- **Fiber/Matrix Interface:**
 - Thermal expansion can cause composite weakening if there is a mismatch in the coefficients of thermal expansion between fiber and matrix.

Above effects should be amenable to systematic study.

Irreversible Changes upon Increasing Moisture Concentration

- **Moisture Uptake:**
 - Depends on percentage of voids. Promoted by capillary action along fibers. Experimental measurements are needed.

- **Polymer Matrix:**
 - Hydrolysis is possible, especially if polymer backbone contains polyesters, polyamides, polyimides or polycarbonates. Results in chain scission and a reduction in molecular weight. Rate of reaction can be measured in separate controlled experiments.

- **In Presence of Stress:**
 - Amorphous polymers are susceptible to environmental stress cracking. Crazes can form rapidly and grow to become cracks that can lead to failure. Presence of corners can aggravate the situation. Needs study.
Irreversible Changes upon Increasing Moisture Concentration

➢ Fiber Reinforcement:
 ➢ Aramid and glass fibers are prone to degradation. In glass fibers, moisture leaches out alkali oxides. Other reactions for aramids
 ➢ Degradation of fibers can accelerate in the presence of stress. Needs quantification

Methods of Improving Adhesive Bonding between Fiber and Matrix

➢ Physical
 ➢ Cold plasma or electric discharge treatment. Results in etching, cleaning and surface roughening

➢ Chemical
 ➢ Natural fibers are treated with alkali, acetic anhydride, benzoyl chloride, or maleic anhydride
 ➢ Glass fibers are treated with silanes
 ➢ Polymers can be grafted onto fiber surface. Act as coupling agents

Strength of interface depends on surface treatment. Rate of delamination should also depend on nature of surface treatment. No simple theory available for this
Irreversible Changes upon Increasing Moisture Concentration

- **Osmosis:**
 - Products of hydrolysis or chemicals leached from glass fibers cannot diffuse out of gel coat. Instead, water diffuses in so as to reduce the concentration of these chemicals.

- **Consequences:**
 - Blistering of surface
 - Delamination at fiber/matrix interface

- **In Presence of Stress:**
 - Delamination is accelerated

Failure of Polymer Composites

- Composite structure can be weakened in a variety of ways, by damage to matrix, fibers and/or the fiber/matrix interface.

- Each damage process progresses at its own rate, but they may be synergistic effects.

- What is observed is the result of all the processes acting together.

- Challenge is to relate individual processes to overall observation in order to predict minimum service life.

- Need is to find ways of mitigating composite aging – Better materials, improved processing, use of additives, protection from elements.
Suggestions for Future Research

- Select limited number of resin systems, fibers and composite geometries
- Make composite structures for durability testing by one or two processes
- Characterize composite structure
- Examine behavior of composite and its components over combined ranges of moisture content and temperature for extended periods of time. Determine cause of failure, and identify the weakest link
- Repeat above for creep and fatigue loading
- Develop durability correlations
- Look for ways to slow down the failure process

Durability of FRP: The Key Role of Cold-Cured Thermosetting Resins

Mariaenrica Frigione (mariaenrica.frigione@unisalento.it)
Dept. of Engineering for Innovation, University of Salento
Via Arnesano - 73100 Lecce - Italy
Durability of FRP: the key role of cold-cured thermosetting resins

Mariaenrica Frigione (mariaenrica.frigione@unisalento.it)
Dept. of Engineering for Innovation, University of Salento
Via Arnesano - 73100 Lecce - Italy

Summary
Matrices or adhesives for FRP manufacturing and/or application: thermosetting resins cured on field (i.e. subjected to a moderate/low-temperature cure).
The key role of “cold-cured” thermosetting resins: how the properties of cold-cured resins are reflected on the durability of FRP (adhesion strength).
Durability studies (in laboratory and on field) performed on FRP and their components.
Natural and accelerated aging: it is possible to make durability previsions in short times?
Lack of standard test procedures specifically intended for FRP and their components for civil infrastructure applications.
Areas in need of further research.

Durability of FRP: the key role of cold-cured thermosetting resins

- Durability of FRP's depends on the durability of any single component as well as on the service exposure conditions.
- Components: resins (more frequently thermosetting resins cured at service, i.e. ambient, temperature), fibers and the interface between them.
- Heavy concerns exist on Cold-curing thermosetting resins (for instance epoxy) used as matrices to manufacture (through wet layup technique) FRP and structural adhesives to apply (also precured) FRP.
- Consequences of an ambient temperature curing: curing times in the order of weeks/months (much longer than those suggested by suppliers); incomplete cure (that can continue during service life); glass transition temperature (T_g) slightly higher than the ambient temperature (water as moisture or rain, can reduce T_g).

T_g's calculated (by Calorimetry, DSC) on different commercial cold-cured epoxy resins (matrices for wet layup and structural adhesives for FRP):
- $T_g = 46^\circ C, 50^\circ C$ (Frigione, et al., 1998; Frigione, et al., 2000)
- $T_g = 51^\circ C, 58^\circ C$ (Frigione, et al., 2006a)
- $T_g = 57^\circ C$ (Frigione, et al., 2006b; Frigione and Lettieri, 2008)
- $T_g = 50^\circ C, 37^\circ C, 52^\circ C$ (Sciolti, Frigione et al., 2010)

How the properties of cold-cured resins affect the performance of FRP

Similar results can be also found in many other papers authored by: Al-Mahaidi and co-workers, Keller and co-workers, Hollaway, Marouani and co-workers, Motavalli and co-workers, etc.
Cure at ambient temperature: long curing time and incomplete cure

- The very long curing times (even months) required at room temperature are often not sufficient to complete the curing reactions and achieve a full development of physical and mechanical properties of the resin:

 - Tg vs. curing time (Frigione, et al., 2006)
 - Young dynamic modulus vs. curing time (Frigione, et al., 2000)

Mechanical in-plane tensile tests performed on unidirectional single ply FRP during their curing stage: no influence on both FRP's.

(Sciolti, Frigione et al., 2010)

FRP Curing time (weeks)	Tensile Modulus (GPa)
CFRP 36 | 248 ± 26
CFRP 44 | 199 ± 27
GFRP 36 | 82 ± 19
GFRP 44 | 74 ± 6

What about the adhesion strength developed during curing?

Flexural mechanical properties of epoxy (Tg = 46°C)

Decrease in adhesion strength (Slant Shear Test) to concrete (mean compressive strength = 57.3 MPa) of same epoxy

Adhesion strength at 25°C = 16.6 MPa
Adhesion strength at 50°C = 3.7 MPa (-78%)

We can expect the same decrease in the adhesion strength between FRP and a substrate

Similar results can be also found in other papers authored by:
Al-Mahaidi and co-workers, Keller and co-workers, Hollaway, Marouani and co-workers, Motavalli and co-workers, etc.
Group D - Slide 19

Durability data (temperature) for (wet layup or precured) FRP

- Influence of testing temperature on performance of FRP: when the service temperature approaches and exceeds the Tg of the matrix/adhesive, for wet layup FRP, and adhesive, for precured FRP, both applied to concrete elements, an appreciable decrease in bond strength is observed.

![Double lap shear test. Structural cold-cured epoxy used as matrix and/or adhesive for FRP (Tg = 55°C)](image)

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>% Decrease in Bond Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>-54%</td>
</tr>
<tr>
<td>80</td>
<td>-72%</td>
</tr>
</tbody>
</table>

Leone, et al., 2009

Double lap shear test. Structural cold-cured epoxy used as matrix and/or adhesive for FRP (Tg = 55°C)

The maximum bond strength decreases with temperature:
- 54% for wet layup CFRP
- 72% for wet layup GFRP
- 25% for precured CFRP

Similar results on FRP applied also to different substrates can be also found in other papers authored by: Al-Mahaidi and co-workers, Keller and co-workers, etc.

Group D - Slide 20

Durability data (water) for cold-cured thermosetting resins

- Influence of presence of water/moisture on performance of the resin: water adversely affects mechanical properties and Tg of the resin and adhesion to concrete.

![Decrease in adhesion strength (Slant Shear Test) to concrete](image)

<table>
<thead>
<tr>
<th>Immerision (days)</th>
<th>% Decrease in Adhesion Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-17%</td>
</tr>
<tr>
<td>14</td>
<td>-31%</td>
</tr>
<tr>
<td>28</td>
<td>-38%</td>
</tr>
</tbody>
</table>

Sciolti, Frigione, et al., 2010; Frigione and Lettieri, 2008

We can expect the same influence on the adhesion strength between FRP and a substrate.

Review paper:

Similar results on FRP applied to concrete/masonry can be also found in other papers authored by:
Lourenço and co-workers, Silva and co-workers, Dai J.-G. and Yokota H. and co-workers.

Review paper:

Similar results on FRP applied to concrete/masonry can be also found in other papers authored by:
Lourenço and co-workers, Silva and co-workers, Dai J.-G. and Yokota H. and co-workers.

Review papers:
Similar results can be also found in many other papers, among them those authored by Al-Mahaidi and co-workers.
Outdoor exposure and weathering effects are only in part reversible). (Lettieri and Frigione, 2012)

Outdoor exposure (weathering) and physical aging/de-aging processes are all responsible for the variation in properties of cold-cured resins, reflecting the fluctuations in climatic conditions (the weathering effects are only in part reversible).

Commercial epoxy resin with initial: flexural modulus = 3.3 GPa; flexural strength = 50.6 MPa

Weathering effect on adhesion strength (Slant Shear Test) to concrete (mean compressive strength = 66 MPa) of commercial epoxies (Frigione, et al, 2001c)

We can expect the a certain influence also on the adhesion strength between FRP and a substrate

Group D - Slide 23

Outdoors exposure Vs. accelerated aging

In order to reduce the long-lasting durability “on field exposure” studies, accelerated tests are frequently proposed.

In standardized procedures, one or more weather-like conditions are intensified to levels greater than those occurring naturally (i.e. very high temperatures, prolonged immersion and higher loads). These procedures, whilst reducing test time, may give unrealistic failure modes which may not take place under service conditions.

Furthermore, a rationale prediction through accelerated procedures must include, for each specific material (matrix/resin), a precise correlation between the results obtained under natural and artificial weathering conditions. This would require, in turn, a huge number of carefully selected procedures based on both natural and artificial exposures.

Commercial epoxy resin with initial: flexural modulus = 3.3 GPa; flexural strength = 50.6 Mpa

(Frigione and Lettieri, 2011)

At the present time, accelerated aging procedures are not able to reproduce the weathering occurred after long-term outdoor exposure, they can only supply qualitative indications (reference limit values never achievable in true service conditions).

No specific standard test methods available for FRP

(Wu and Yan, 2013)

Group D - Slide 24

Review paper:

Test procedures

- Most of the experiments involving durability aspects of FRP and their components are conducted following standard procedures not appropriate for these systems.
- As an example, the standard for water absorption tests (ASTM D 570) recommends a conditioning procedure, able to assure the complete dryness to samples before their immersion in water, in which each sample is dried in vacuum oven for 24 h at 50°C. This conditioning procedure performed on not fully cross-linked cold-cured resins produces the post-cure of the resin, with a consequent modification of properties (i.e., the behavior upon immersion will be assessed on a system different from that employed on field). (Frigione and Lettieri, 2008)

Water absorption behavior of a commercial epoxy resin with initial Tg = 57°C

Any treatment/procedure must be performed on systems that have achieved a thermodynamic equilibrium state (i.e. with steady values of properties)

Accelerated weathering procedures and Time-temperature superposition principle both employ values of temperature possibly able to post-cure the resin.

Additional Topics in Need of Further Research

- Research aimed at find new cold-cured systems able to develop Tg appreciably higher than ambient temperature and to complete the cure in shorter times (thermodynamically stable systems).
- Research aimed at find new cold-cured systems able to behave better in presence of water and other harsh agents (chemicals, salts, alkaline and acid environments).
- Deep analysis of the adhesion strength developed between FRP and the substrate during the curing of the matrix (for wet layup systems) and adhesive (for all systems).
- Development of standard durability test methods specific for FRP and their components employed in civil infrastructure applications.
- Implementation of collaboration between experts possessing different scientific background and expertise, in order to achieve a stronger mutual comprehension of durability phenomena and a faster successful identification of solutions.

Recommendations for research procedures:

- Attention must be always paid to the curing conditions used (curing temperature & time) since these latter severely affect the response of the materials/system to any durability test.
- A comparison of results from durability tests is practicable (and useful) only if comparable curing/conditioning conditions are employed.
- The Tg of the resin should be preferably determined using DSC instead of DMTA (only). With DSC is possible to assess the degree of cure of the resin, which is not possible by using DMTA. The results from DSC are, in addition, more accurate than those obtained by DMTA (especially when the Tg is calculated by the peak of tan delta).
Variable Amplitude Fatigue Lifetime Predictions for FRP Composites

Professor Scott W. Case (scase@vt.edu)
Virginia Tech, Department of Engineering Science and Mechanics
495 Old Turner Street, Blacksburg, VA 24061

Group D - Slide 27

Summary

This presentation focuses on fatigue lifetime prediction techniques for FRP composites with an emphasis variable amplitude (spectrum) loading conditions. A summary of selected experimental characterizations and applications of modeling approaches highlights successes in applying the techniques ("validations") as well as cases where the technique clearly does not work. Attention is also given to interactions between mechanical loading and environment in accelerating the fatigue process.

Areas identified in need of future research include mechanistic models describing progressive damage development in fatigue (rather than the currently applied phenomenological models) as well as developing an understanding of how environment either enhances or changes those mechanisms. Additionally, there is a need for datasets on model material systems large enough to include statistical variation in fatigue behavior to enable model calibration and validation.
Use coupon-level data + analysis (finite element stress analysis, residual strength-based lifetime prediction) to predict observed structural-level failures for constant amplitude fatigue loading.

Why is variable amplitude fatigue an issue?

88 Sample S-N data

<table>
<thead>
<tr>
<th>F_a</th>
<th>\bar{N}</th>
<th>\hat{N}</th>
<th>median</th>
<th>Weibull a</th>
<th>Weibull β</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.71</td>
<td>16</td>
<td>744</td>
<td>3.0</td>
<td>1061</td>
<td></td>
</tr>
<tr>
<td>0.32</td>
<td>16</td>
<td>11062</td>
<td>4.3</td>
<td>12317</td>
<td></td>
</tr>
<tr>
<td>0.44</td>
<td>16</td>
<td>14590</td>
<td>3.7</td>
<td>56122</td>
<td></td>
</tr>
<tr>
<td>0.49</td>
<td>16</td>
<td>19919</td>
<td>4.2</td>
<td>110977</td>
<td></td>
</tr>
<tr>
<td>0.36</td>
<td>16</td>
<td>177012</td>
<td>1.4</td>
<td>471090</td>
<td></td>
</tr>
<tr>
<td>0.32</td>
<td>3</td>
<td>1542453</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Least squares regression curve fit:

$$\log(N) = -8.7 \log(F_a) + 1.46$$

Backlit specimen during fatigue

http://dx.doi.org/10.1016/j.engfracmech.2007.03.002
Now for the interesting part: Spectrum Loading

- 22 Stress level spectrum (74 - 215 MPa)
- 735641 total cycles, R = 0.1, sinusoidal loading

Applied as:
- Descending Ordered Blocks
- Ascending Ordered Blocks
- “Completely Randomized”

Prediction uses UTS strength distribution as input.
Strength-life equal rank assumption (impossible to verify experimentally)

\[F_T = 1 - \sum_{i=1}^{n} (1 - F_{0i})^j \left(\frac{i}{N(F_{0i})} \right)^j \]
Group D - Slide 33

Spectrum Residual Strength Evolution

\[F_r = 1 - \left(\frac{1}{N(N_p)} \right)^{1/N} \]

Ascending stress block loading residual strength prediction

Descending stress block loading residual strength prediction

Random spectrum loading residual strength prediction

Experimental ascending and descending stress block loading residual strength

Experimental random spectrum failure (premature)

http://dx.doi.org/10.1016/j.engfracmech.2007.03.002

Group D - Slide 34

Examples of Existing Datasets and Models for Variable Amplitude Fatigue

<table>
<thead>
<tr>
<th>Material</th>
<th>Fiber</th>
<th>Matrix</th>
<th>Laminate Structure</th>
<th>Fiber Volume Fraction</th>
<th>Data source</th>
<th>Spectrum Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD1014</td>
<td>E-glass</td>
<td>Orthoglass</td>
<td>[90/0/-45] [0/-45/90]</td>
<td>0.34</td>
<td>DOE/MSU</td>
<td>RAY95, RAY95R01</td>
</tr>
<tr>
<td>MD2</td>
<td>E-glass</td>
<td>Prime 20 epoxy</td>
<td>[0/-45/+45] [0]</td>
<td>0.52</td>
<td>OPTIDAT</td>
<td>WISPER</td>
</tr>
<tr>
<td>UD2</td>
<td>E-glass</td>
<td>Prime 20 epoxy</td>
<td>[0/-45/+45] [0]</td>
<td>0.52</td>
<td>OPTIDAT</td>
<td>WISPER</td>
</tr>
<tr>
<td>VT8084</td>
<td>Woven E-glass</td>
<td>Ashland VE</td>
<td>[0/+45/-45/90]</td>
<td>0.52</td>
<td>Virginia Tech</td>
<td>RAY95, RAY95R01</td>
</tr>
</tbody>
</table>

Note: All but one depends explicitly on S-N curve

As expected, samples that were water-aged exhibited poorer performance than those that were not water aged. Fatigue lifetimes scale with residual ultimate strength. (Slope is approximately -10%/decade.)

Prior moisture cycling influences fatigue response. Scaling with ultimate strength is somewhat less convincing (considerable scatter).
Topics in Need of Further Research

- Physics-based models to predict properties as a function of loading and environmental history
 - Existing lifetime prediction models (particularly for spectrum loading) are phenomenological
 - Existing experimental data suggests phenomenological models miss key features of behavior and are non-conservative
- Datasets that may be used for not only model development, but also model validation

Aging and Durability Issues for Fiber Reinforced Polymers

Samit Roy (sroy@eng.ua.edu)
Professor, Department of Aerospace Engineering and Mechanics
University of Alabama, Tuscaloosa
Standard durability models available today for life prediction of FRP are primarily empirical or phenomenological models, developed mainly by curve fitting test data. Test matrix has to be repeated if a new FRP system is introduced or if the environment changes beyond what is in the test matrix. Synergistic interactions between various environmental factors (stress, humidity, pH, temperature) are frequently not included. A mechanism-based model removes some, if not all, of the empiricism. There is need to develop a synergistic mechanism-based life prediction model for FRPs in aggressive environment by synergistically incorporating load history and loading rate effects. Use of Molecular Dynamics (MD) with appropriate force fields to study synergistic interactions at the polymer molecular level and at fiber matrix interface. Multi-scale modeling (nano-micro-macro) is required to perform life-prediction at the macro-scale.
Group D - Slide 41

Aging Data Available: Short Beam Shear Test (STTR, 2009)

Group D - Slide 42

Methods of Assessing Durability Issues of FRPs: Interface Cohesive Layer Model Incorporating Rate and Load History Effect to Model Debond and Delamination in Aggressive Environments
Micromechanics Based Cohesive Layer with Coupled Viscoelasticity and Damage

\[\alpha(t) = \frac{A}{\sum A_i(t)} \]

\[\bar{\sigma}_0(t) = (1-\alpha(t)) \sigma_0^{\text{thaw}}(t) \]

\[|\sigma(t)|^{\text{thaw}} = |C(t)(\alpha(t)) - |H(t)|) \]

\[\langle \sigma(t) \rangle = (1-\alpha(t))(C(t)(\alpha(t)) - |H(t)|) \]

Rate dependent cohesive traction-separation law*

\[da \begin{cases} dt = a_0 \lambda^n, & \text{if } 0 \leq \lambda<1 \\ 0, & \text{if } \lambda<0 \text{ and } \alpha<1 \end{cases} \]

\[\lambda(t) = \lambda_e(t) - \lambda_C, \quad \lambda_e(t) \geq \lambda_C \]

where, \(\lambda_C \) is the value of critical stretch at failure initiation

Viscoelastic cohesive layer is an effective way of simulating rate dependent delamination/debond in composites with hygrothermal degradation included in \(\lambda_C, m, a_0 \), without recourse to a specified traction-separation law.
Group D - Slide 45

Micromechanics Based Cohesive Layer for Hygrothermal Degradation in FRP

\[
\frac{\partial^2 m_1}{\partial t^2} + \frac{\partial m_2}{\partial t} = D_0 \frac{\partial^2 m_1}{\partial x^2}
\]

\[N(t) = N_0 \exp \left(\frac{-H_0(t)}{D_0} - (G - 1) \right)\]

\[\sigma_{MIN}(t) = N(t) \sigma_{MIN0} / N_0\]

Cohesive RVE showing polymer fibrils

Group D - Slide 46

Aging Data Available:
Characterization of Damage Constants for Delamination after Thermal Aging of FRP
Double Cantilever Beam (DCB) Specimen for Characterizing Damage Parameters in IM7/BMI due to Thermal Aging at 260 °C for 1000 hours

Dimensions of DCB Specimens (mm)

<table>
<thead>
<tr>
<th></th>
<th>Delamination</th>
<th>Debond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>Width</td>
<td>14</td>
<td>2.38</td>
</tr>
<tr>
<td>Thickness</td>
<td>2.38</td>
<td>14</td>
</tr>
<tr>
<td>Initial crack length</td>
<td>70-80</td>
<td>70-80</td>
</tr>
</tbody>
</table>

Evaluation of Cohesive Stresses from J-integral (Mode I)

\[J = \int_{\gamma} \left(W_{dy} - P_{dx} \right) ds \]

\[J_{int} = \int_{\gamma} \left(\sigma_{ij}(\delta_{ij}, \gamma) \right) \delta_{ij} ds \]

\[J_{mat} = J_{int} \]

\[\sigma_{ij}(\delta_{ij}, \gamma) = \frac{\partial V}{\partial \gamma} \]
Group D - Slide 49

Evaluation of Cohesive Stresses from J-integral using Digital Image Correlation

- Load vs. time at load pin
- Y displacement field from DIC analysis

Group D - Slide 50

Calculation of Cohesive Stress using J-integral for IM7/BMI for Delamination (Unaged Baseline Case, room temperature)

\[J = \frac{P}{\delta} \]

- \(P \): Reaction force at the pin location.
- \(\delta \): Rotation at the pin location.
- \(\delta_l \): Separation at the crack tip in y direction.

Test data indicate 79% reduction in peak cohesive stress, from 27 MPa to 5.6 MPa due to thermal aging.

\[\text{Log}(\alpha(t)) = \text{Log}a + m \text{Log}t \]

\[\frac{du}{dt} = u_0 \alpha, \quad \gamma = m \]

Group D - Slide 51

Group D - Slide 52
Areas for Future Research

- Better understanding of mechanism-based synergistic effects in predicting FRP bond durability due to hot-wet, stressed, alkaline, and acidic environments is needed. Chemical kinetics will need to be studied thoroughly and fully characterized.

- Molecular dynamics simulation with reaction kinetics (e.g., ReaxFF in LAMMPS) is needed to study the effect of chemical species within polymer.

- MD time scaling issues will need to be addressed to relate to real time data.

- Can we partition loading history effect and environmental effect on damage parameters? Or are these effects intrinsically coupled?

- Use of nanoparticles (e.g., nanoclay) as moisture barrier and for compressive and shear strength enhancement in FRP composites needs further study.

A Model to Predict the Degradation of FRP Bonded Concrete Joints in Moist Environment

Baolin Wan (baolin.wan@marquette.edu)
Department of Civil, Construction and Environmental Engineering
Marquette University
PO Box 1881
Milwaukee, WI 53201-1881
This study proposed a bond mechanism based deterioration model of bond interfacial fracture energy for FRP-concrete joints in moist environments. The bond interface region relative humidity (IRRH) in moist environment was correlated to the bond fracture energy in this deterioration model. The IRRH-dependent interface separation-tractions were derived in the frame of cohesive zone model (CZM). Such an IRRH-dependent interface separation traction law was simulated by a series of non-linear interface elements attached to the bond interface to calculate the macroscopic load-displacement curves for the Modified Double Cantilever Beam (MDCB) specimens. Through moisture diffusion analysis, IRRH were determined as a function of the moisture exposure time for given specimen dimension and environmental RH. Using IRRH as the bridge, the time-dependent load-displacement curves of the MDCB specimens were obtained. The good agreement with the experimental data indicated that the model worked well. The approach developed in this study can be used to simulate and predict the durability of bond between FRP and concrete in moist environments.

Moisture Deteriorating FRP/Concrete Bond

- The common environmental factors include (but are not limited to): moist environments, acidic environments (salt solution), alkaline environments (alkaline solution in concrete and soil), freeze-thaw cycling, wet-dry cycling, high temperature, temperature variation, ultraviolet (UV) radiation, etc.
- Most environmental factors are directly related to or partially coupled with moisture. Understanding the moisture effect on the durability of the FRP-concrete bond is very helpful for the solution of other durability problems.
- Moisture can decrease the free surface energy of bond interface, lower the adhesion strength, degrade the strength and stiffness of adhesive, and cause vapor and osmotic pressure.
- Exposure to moisture will cause the failure mode changing from cohesive failure in concrete to adhesive failure in interface.
Group D - Slide 57

Modified Double Cantilever Beam (MDCB) Test

- The intermediate crack induced debonding (IC debonding) initiates within the beam span at a flexural or shear/flexural crack in concrete and then propagates towards the plate end in the direction of decreasing moment. The crack tip of IC debonding is subject to both Mode I loading (normal stress) and Mode II loading (in-plane shear stress). Therefore, the test method should be able to evaluate the FRP/concrete bond subjected to mixed-mode loading.

- By adjusting the angle of base, modified double cantilever beam (MDCB) test can evaluate the fracture energy when the FRP/concrete interface is subjected to mixed mode loading with different phase angles.

![MDCB test setup (Ouyang and Wan, 2008)](image-url)

Group D - Slide 58

Interfacial Fracture Energy vs. Water Immersion Duration

- Interfacial fracture energy trended to be steady after long term exposure to moisture.
- Interface bond mechanisms: molecule adsorption force vs. mechanical interlocking

![Interfacial Fracture Energy vs. Water Immersion Duration](image-url)

Interface Region Relative Humidity (IRRH)

Deterioration Model of G_f in Moist Environments

$$G_f(H) = G_{f0}(1 - \frac{1 - \beta}{1 + \frac{1}{1 - H(x,y,t)}(1 - H_d)^n})$$

Where $G_f(H)$ is the interfacial fracture energy in wet conditions, which is dependent on the interface region relative humidity (IRRH); $H(x,y,t)$ is the value of the IRRH at location (x,y) at bond interface at time t, which is determined by moisture diffusion process; G_{f0} is the initial fracture energy at dry condition ($H=0\%$); H_d is the value of IRRH when the interfacial fracture energy $G_f(H)$ reduces to the half value of ($G_{f0} - G_{fr}$). The parameter β is defined as the retention coefficient in this study and it is equal to G_{fr}/G_{f0} in which G_{fr} is the final steady retention of G_{f0} at $H=100\%$. The parameter n is the exponential coefficient and it is set as 6 in this model.

Group D - Slide 63

Moisture Diffusion Analysis

- FEM for diffusion analysis
- RH contour
- Transverse distribution of RH at interface
- Vertical distribution of RH

Group D - Slide 64

IRRH Dependent Separation-Traction Relation for Cohesive Zone Model (CZM)

Assume the ratio of peak stress, σ_{max}, to the characteristic length δ_0, at which normal separation reaches the σ_{max} will not be affected by the moisture at the interface region.

$$
k_d = \sigma_{\text{max}} \times \frac{1}{\delta_0}
$$

$$
T_e(H) = c_k \delta_n \exp\left(-\delta_n \frac{1}{k_e c_n (1-\frac{1}{1-(1-H)/(1-H_d)})^{1+\beta}}\right)
$$

Interface elements

IRRH-dependent stress-separation relation

(Anthony and Wan, 2009)

Load-Deflection Curves of MDCB Specimens at Different Immersion Duration

Experimental Results

Numerical Results

- **Vertical displacement (mm)**
- **Peel load (N)**

Areas in Need of Further Research

- An advanced micro-level experimental test is needed to measure the contribution of mechanical interlocking and adsorption for the FRP/concrete bond.
- The loading phase angle effects on the bond deterioration are needed to investigate.
- Diffusion analysis is needed for FRP/concrete system with variable environmental temperature, variable environmental relative humidity, and wet-dry cycle.
- Large scale testing and modeling are needed to validate/modify this small scale model to be able to predict the life of FRP repaired/retrofitted concrete structure in moist environment.
- Long term field monitoring is needed to validate the life prediction model.
Appendix A: Workshop Participants

Dr. Thiru Aravinthan
School of Civil Engineering and Surveying
Faculty of Health, Engineering and Sciences
University of Southern Queensland
Toowoomba, Queensland 4350 Australia
Thiru.Aravinthan@usq.edu.au

Dr. Rebecca Atadero
Civil and Environmental Engineering
Colorado State University Engineering A207J
Fort Collins, CO 80523-1301
Rebecca.Atadero@ColoState.edu

Dr. Charles E. Bakis
212 EES Building
Dept. of Engineering Science and Mechanics
The Pennsylvania State University
University Park, PA 16802
cbakis@psu.edu

Dr. Brahim Benmokrane, P. E.
Tier-1 Canada Research Chair in Advanced Composite Materials for Civil Structures
Quebec-FQRNT Research Centre on Concrete Infrastructure (CRIB)
Department of Civil Engineering
University of Sherbrooke
Sherbrooke, Quebec, Canada J1K 2R1
Brahim.Benmokrane@USherbrooke.ca

Mr. Mike Blanford
Affordable Housing Research and Technology Division
Office of Policy Development and Research
US Department of Housing and Urban Development
Washington, DC 20410
michael.d.blanford@hud.gov

Dr. John P. Busel
Director, Composites Growth Initiative
American Composites Manufacturers Association
3033 Wilson Blvd., Ste. 420, Arlington, VA 22201
jbusel@acmanet.org

Dr. Timothy E. Bradberry, P.E.
Standards Branch
Bridge Division
Texas Department of Transportation
125 E. 11th Street
Austin, Texas 78701-2483
Tim.Bradberry@txdot.gov

Dr. Mariaenrica Frigione
Department of Engineering for Innovation
University of Salento
Via Arnesano
73100 LECCE - Italy
mariaenrica.frigione@unisalento.it

Dr. Douglas J. Gardner
School of Forest Resources and Advanced Structures and Composites Center
University of Maine
Nutting Hall Orono, ME 04469
douglassg@maine.edu

Dr. Brahim Benmokrane, P. E.
Tier-1 Canada Research Chair in Advanced Composite Materials for Civil Structures
Quebec-FQRNT Research Centre on Concrete Infrastructure (CRIB)
Department of Civil Engineering
University of Sherbrooke
Sherbrooke, Quebec, Canada J1K 2R1
Brahim.Benmokrane@USherbrooke.ca

Dr. Scott W. Case
Department of Engineering Science and Mechanics
Virginia Tech
495 Old Turner Street
Blacksburg, VA 24061
scase@exchange.vt.edu

Dr. Jian-Guo Dai
Department of Civil and Environmental Engineering
The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong
cjgdai@polyu.edu.hk

Dr. Emmanuel Ferrier
Department Engineering IUT LYON 1
Laboratory of civil and environmental engineering LGCIE site Bohr / Université Lyon 1
Field scientist of the Doua
82 bd Niels Bohr / 69622 Villeurbanne cedex
emmanuel.ferrier@univ-lyon1.fr

Dr. Mariaenrica Frigione
Department of Engineering for Innovation
University of Salento
Via Arnesano
73100 LECCE - Italy
mariaenrica.frigione@unisalento.it

Dr. Douglas J. Gardner
School of Forest Resources and Advanced Structures and Composites Center
University of Maine
Nutting Hall Orono, ME 04469
douglassg@maine.edu

Dr. Douglassg@maine.edu

Dr. H. R. (Trey) Hamilton, P. E.
Department of Civil and Coastal Engineering
University of Florida
365 Weil Hall
P.O. Box 116580
Gainesville, FL 32611
hrh@ce.ufl.edu

Dr. Gangarao Hota, P.E.
Constructed Facilities Center
Center for Integration of Composites into Infrastructure
West Virginia University
Morgantown, WV 26506
ghota@mail.wvu.edu

Dr. Gangarao Hota, P.E.
Constructed Facilities Center
Center for Integration of Composites into Infrastructure
West Virginia University
Morgantown, WV 26506
ghota@mail.wvu.edu

Mr. Bruce Johnson
Oregon Department of Transportation
ODOT Research Section
200 Hawthorne Ave. SE
Suite B-240
Salem OR 97301-5192
bruce.v.johnson@odot.state.or.us
Dr. Venkatesh Kodur, P.E.
SAFE-D Center
Civil and Environmental Engineering
Michigan State University
428 S. Shaw Lane, Rm. 3580
East Lansing, MI 48824
kodur@egr.msu.edu

Dr. Ellen Lackey
Department of Mechanical Engineering
Composite Materials Research Group
Test Facilities
University of Mississippi
201G Carrier
University, MS 38677
melackey@olemiss.edu

Mr. Richard G. Lampo
U.S. Army Corps of Engineers
Engineer Research and Development Center,
Construction Engineering Research Laboratory (ERDC-CERL)
Champaign, IL 61826-9005
richard.g.lampo@usace.army.mil

Dr. Ruifeng (Ray) Liang
Created Facilities Center
Center for Integration of Composites into Infrastructure
West Virginia University
Morgantown, WV 26506
rliang@mail.wvu.edu

Dr. Weiqing Liu
Advanced Engineering Composites Research Center
Nanjing University of Technology
Nanjing, P.R. China 210009
wqliu@njust.edu.cn>

Ms. Emily Maurer
Bridge Design Engineer
Delaware Department of Transportation
800 Bay Road
Dover, DE 19901
Emily.maurer@state.de.us

Dr. Masayuki Nakada
Materials System Research Laboratory
Kanazawa Institute of Technology
3-1 Yatsukaho, Hakusan, Ishikawa
924-0838
Japan
nakada@neptune.kanazawa-it.ac.jp

Mr. Jorgge E. Pagan-Ortiz
Office of Infrastructure Research and Development
U.S. DOT, Federal Highway Administration
McLean, Virginia 22101-2296
jorge.pagan@dot.gov

Mr. Mario A. Paredes, P.E.
Corrosion Research Laboratory
Structural Materials Unit
State Materials Office
Florida Department of Transportation
5007 NE 39th Avenue
Gainesville, FL 32609
mario.paredes@dot.state.fl.us

Dr. Mohamed Pour Ghaz
Department of Civil, Construction, and Environmental Engineering
North Carolina State University
Campus Box 7908, Raleigh, NC 27695-7908
mpourghaz@ncsu.edu

Dr. Samit Roy
Department of Aerospace Engineering and Mechanics
University of Alabama, Tuscaloosa, AL 35487-0280
sroy@eng.ua.edu

Dr. David W. Scott
Civil and Environmental Engineering
Georgia Institute of Technology
790 Atlantic Drive
Atlanta, GA 30332-0355
dscott@gatech.edu

Mr. Mark Skidmore, P.E.
Constructed Facilities Center
Center for Integration of Composites into Infrastructure
West Virginia University
Morgantown, WV 26506
Mark.Skidmore@mail.wvu.edu

Dr. Constantinos Soutis
Department of Aerospace Engineering
University of Manchester
Manchester M13 9PL, UK
constantinos.soutis@manchester.ac.uk

Mr. Louis N. Triandafilou, P.E.
Federal Highway Administration
Turner-Fairbank Highway Research Center
6300 Georgetown Pike
McLean, Virginia 22101-2296
lou.triandafilou@dot.gov

Dr. P. V. Vijay
Constructed Facilities Center
Center for Integration of Composites into Infrastructure
West Virginia University
Morgantown, WV 26506
P.Vijay@mail.wvu.edu

Dr. Baolin Wan
Department of Civil, Construction and Environmental Engineering
Marquette University
PO Box 1881
Milwaukee, WI 53201-1881
baolin.wan@marquette.edu

Mr. Harry White, P.E.
NYS DOT, Structures Division
50 Wolf Rd., 43
Albany, NY 12232
Harry.White@dot.ny.gov

Mr. Donald Williams, P.E.
Office of Research & Special Studies
WVDOT-DOH
Charleston, WV 25305-0430
dlwilliams@dot.state.wv.us
Appendix B: Working Group Session Attendance

<table>
<thead>
<tr>
<th>Participant</th>
<th>Affiliation</th>
<th>Group A: FRP Reinforcement</th>
<th>Group B: FRP Shapes</th>
<th>Group C: Test Methods</th>
<th>Group D: Aging Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thiru Aravinthan</td>
<td>U Southern Queensland, AU</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rebecca Atadero</td>
<td>Colorado State University</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charles E. Bakis</td>
<td>Pen State University</td>
<td></td>
<td></td>
<td></td>
<td>Chair</td>
</tr>
<tr>
<td>Brahim Benmokrane</td>
<td>University Sherbrooke, Canada</td>
<td></td>
<td></td>
<td></td>
<td>Chair</td>
</tr>
<tr>
<td>Michael Blanford</td>
<td>USHUD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tim Bradberry</td>
<td>Texas DOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>John Busel</td>
<td>ACMA</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Scott Case</td>
<td>Virginia Tech</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jian-Guo Dai</td>
<td>HK Polytechnic University</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emmanuel Ferrier</td>
<td>University of Lyon, France</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mariaenrica Frigione</td>
<td>University of Salento, Italy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Douglas Gardner</td>
<td>Maine U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rakesh Gupta</td>
<td>WVU</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trey Hamilton</td>
<td>University of Florida</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gangarao Hota</td>
<td>WVU-CFC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruce Johnson</td>
<td>Oregon DOT</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Venkatesh Kodur</td>
<td>Michigan State U</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Ellen Lackey</td>
<td>University of Mississippi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rich Lampo</td>
<td>USACE</td>
<td></td>
<td></td>
<td></td>
<td>Chair</td>
</tr>
<tr>
<td>Ray Liang</td>
<td>WVU-CFC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weiqing Liu</td>
<td>Nanjing U of Tech, China</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emily Maurer</td>
<td>Delaware DOT</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Masayuki Nakada</td>
<td>Kanazawa Inst Tech, Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mario A. Paredes</td>
<td>Florida DOT</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Mohamed Pour Ghaz</td>
<td>NC State University</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Sumit Roy</td>
<td>University of Alabama</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>David Scott</td>
<td>Georgia Tech</td>
<td></td>
<td></td>
<td></td>
<td>Chair</td>
</tr>
<tr>
<td>Constantinos Soutis</td>
<td>University of Manchester, UK</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Louis Triandafilou</td>
<td>USDOT-FHWA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV Vijay</td>
<td>WVU-CFC</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Baolin Wan</td>
<td>Marquette University</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harry White</td>
<td>New York DOT</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>